Scienza che studia il moto e l’equilibrio dei corpi. È tradizionalmente divisa in tre parti: cinematica, dinamica e statica, che studiano, rispettivamente, il moto prescindendo dalle sue cause, il moto [...] (x) della x (e, in qualche caso, anche della ẋ):
[7] formula
dove ε è una costante maggiore di zero; è questa l’equazionedifferenziale di Liénard, non lineare per la presenza del termine f(x)ẋ, con F=0 nel caso delle oscillazioni libere, con F≠0 ...
Leggi Tutto
Fisica
BBruno Ferretti
di Bruno Ferretti
Fisica
sommario: 1. Introduzione. a) Obiettività secondo Poincaré. b) Storia naturale e fisica. c) Il metodo sperimentale e il metodo teorico. d) Storicità [...] istante specifica lo ‛stato dinamico' del sistema in quell'istante.
Come è ben noto dalla teoria dei sistemi di equazionidifferenziali ordinarie, un sistema di f equazioni del secondo ordine può essere ridotto, e in infiniti modi, a un sistema di 2f ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1971-1980
1971-1980
1971
I problemi NP-completi. L'informatico americano Stephen Cook dà il primo esempio di problema algoritmico NP-completo. La classe NP [...] i risultati raggiunti, in particolare il cosiddetto 'teorema del passo montano', hanno numerose applicazioni nel trattamento delle equazionidifferenziali e integrali. La fama di questo teorema si deve anche all'intuizione geometrica implicita e alla ...
Leggi Tutto
L'Eta dei Lumi: matematica. Meccanica e ingegneria
Massimo Corradi
Meccanica e ingegneria
Alla fine del XVII sec. e forse anche agli inizi di quello successivo, prima della formalizzazione del calcolo [...] Alembert e Daniel Bernoulli ed elaborando una tecnica nuova (metodo dei moltiplicatori di Lagrange) per integrare l'equazionedifferenziale che descrive il moto della corda vibrante.
Ulteriori studi sui principî della meccanica
Intorno alla metà del ...
Leggi Tutto
L'Ottocento: fisica. Raggi e onde luminosi
Jed Z. Buchwald
Raggi e onde luminosi
Dal XVII al XIX sec., due immagini fisiche fondamentali dominarono la speculazione e, talvolta, persino la matematizzazione [...] u fosse piccolo in confronto alle distanze tra i punti del reticolo, Cauchy pervenne piuttosto facilmente a un'equazionedifferenziale alle differenze finite per il moto di un arbitrario elemento del reticolo, in funzione delle differenze tra i ...
Leggi Tutto
L'Ottocento: matematica. Elasticita e idrodinamica
Gleb Mikhailov
Elasticità e idrodinamica
Il XIX sec. rappresenta per la storia della meccanica dei continui un periodo particolarmente importante, [...] egli usò concetti che fondamentalmente avevano a che fare con il continuo. Nella sua memoria si trovano così le equazionidifferenziali di Cauchy del moto espresse in funzione delle componenti dello sforzo, e la dipendenza lineare di queste dalle ...
Leggi Tutto
L'Eta dei Lumi: la fine della conoscenza naturale 1700-1770. Mathematica mixta
Curtis Wilson
Niccolò Guicciardini
Alan E. Shapiro
Mathematica mixta
Astronomia
di Curtis Wilson
Nel XVIII sec. l'accuratezza [...] anche le altre proiezioni ad area equivalente, quella azimutale e quella conica, per mezzo dell'integrazione di equazionidifferenziali.
Ancora oggi sono frequentemente usate per le carte ufficiali due delle proiezioni di Lambert: quella conforme ...
Leggi Tutto
L'Ottocento: matematica. Meccanica analitica
Helmut Pulte
Meccanica analitica
La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] e finali, (ai,bi,ci) e (xi,yi,zi) oltre al tempo t) e imporre a essa di soddisfare in modo identico le equazionidifferenziali alle derivate parziali [21*]. È sufficiente invece considerare S come funzione di 3n+1 quantità (xi,yi,zi e t) e richiedere ...
Leggi Tutto
L'Ottocento: fisica. Meccanica dei continui e dei sistemi discreti
Craig G. Fraser
Meccanica dei continui e dei sistemi discreti
Origine dei concetti di sforzo e di deformazione
La teoria matematica [...] parziali di Hamilton-Jacobi del problema:
dove H=T+V, l'energia totale, è l'hamiltoniana del sistema. La [19] è un'equazionedifferenziale non lineare alle derivate parziali del primo ordine nelle variabili q1,q2,…,qn, t e S, in cui S non appare ...
Leggi Tutto
L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace
Curtis Wilson
La matematica della teoria delle perturbazioni da Euler a Laplace
Accanto allo sviluppo dei [...] moto di Saturno si fosse rivelata soddisfacente. Per mostrare come questo termine si manifesta, esprimiamo la parte relativa a y dell'equazionedifferenziale:
dove E′ è l'anomalia eccentrica di Giove, n è il rapporto dei moti medi e θ=φ′−φ. Se (θ ...
Leggi Tutto
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...
integrale
agg. e s. m. [dal lat. tardo integralis, der. di intĕger «integro, intero»]. – 1. agg., non com. Di elemento che fa parte di un tutto, che concorre alla costituzione di un intero (sinon. quindi di integrante): i corpi i. del mondo...