• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
72 risultati
Tutti i risultati [870]
Matematica [72]
Fisica [105]
Temi generali [91]
Diritto [78]
Biologia [62]
Medicina [57]
Arti visive [51]
Economia [48]
Chimica [49]
Storia [41]

Misura e integrazione

Enciclopedia del Novecento (1979)

Misura e integrazione M. Evans Munroe Introduzione La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] reali su X. Se A è un qualsiasi insieme di numeri reali, la sua immagine inversa rispetto a f è f-1(A)={x∣f(x)∈A}. Se, per ogni insieme gli x, e inoltre tali che per quasi tutti gli x. L'elemento a si chiama integrale di Bochner di f su X e viene ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: TEOREMA DELLA CONVERGENZA MONOTONA – FUNZIONALI LINEARI CONTINUI – CONVERGENZA INCONDIZIONATA – INTEGRAZIONE DI LEBESGUE – RELAZIONE DI EQUIVALENZA

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] bαK(s,t)f(t)dt=g(t) nella quale le funzioni f e g sono elementi di C[a,b], K(s,t) è una funzione continua di s e t Φ∥, allora l'operatore T trasforma Lp suriettivamente in Lp, con operatore inverso continuo T−1 (g=Tf,f=T−1g). Nella teoria generale, un ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Equazioni funzionali

Enciclopedia del Novecento (1977)

Equazioni funzionali JJacques Louis Lions di Jacques Louis Lions Equazioni funzionali sommario: 1. Motivazione ed esempi. 2. Definizione delle soluzioni. 3. Il metodo della trasformazione di Fourier; [...] sui dati e sulla regolarità di Γ, fare il calcolo inverso e risalire alle (7). Si assume allora la (14) a J′(u) il ‛sub-differenziale' ∂J(u) di J nel punto u:∂J(u) è l'insieme degli elementi p∈V′ tali che J(v) − J(u) − (p, v − u) ≥ o ∀ v ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE ALLE DERIVATE PARZIALI – FUNZIONI A QUADRATO SOMMABILE – TEORIA QUANTISTICA DEI CAMPI – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Equazioni funzionali (2)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] XX sec. la Noether pone l'accento sul procedimento inverso: partire da un anello commutativo e fare geometria facendo generale tracciato dallo stesso Artin. Sia K un campo finito con q=pn elementi e K(t) un campo di funzioni su K. I polinomi sono ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

Scienza greco-romana. Le sfere celesti e le origini della trigonometria

Storia della Scienza (2001)

Scienza greco-romana. Le sfere celesti e le origini della trigonometria John L. Berggren Le sfere celesti e le origini della trigonometria La comparsa della sfera nella geometria è una diretta conseguenza [...] movimento in particolare, al punto che se Euclide nei suoi Elementi aveva definito la sfera nei termini della rotazione di un semicerchio da cerchi che passano per i poli, sia dell’inverso di Autolico (De sphaera quae movetur, teorema 3); ancora ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. La teoria dei numeri

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La teoria dei numeri Günther Frei La teoria dei numeri La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] completato da Lagrange nel 1775. Nel 1752 Euler scoprì e dimostrò anche l'inverso del teorema 4.2, e cioè (teorema 4.4): se un numero diofantea fu motivato senza dubbio da un teorema contenuto negli Elementi di Euclide (Libro X, prop. 28, lemma 1). ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA – STORIA DELLA MATEMATICA

Analisi non lineare: metodi variazionali

Enciclopedia della Scienza e della Tecnica (2007)

Analisi non lineare: metodi variazionali Antonio Ambrosetti I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] formula [25] possano essere usate anche in senso inverso, cioè per valutare i numeri di Betti o questo caso). Dato u∈H, diremo che J è differenziabile in u se esiste un elemento di H, che indicheremo col simbolo ∇J(u), tale che [29] formula. ∇J ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DI SCHRÖDINGER – PROIEZIONE STEREOGRAFICA

DE GIORGI, Ennio

Dizionario Biografico degli Italiani (2014)

DE GIORGI, Ennio Enrico Moriconi Nacque l’8 febbraio del 1928 a Lecce figlio di Nicola e di Stefania Scopinich. La madre proveniva da una famiglia di navigatori di Lussino, mentre il padre era insegnante [...] funzionale rilassato. La terza fase procede in senso inverso, producendo un lavoro di regolarizzazione in cui si assumono fissati, nonché la considerazione della correlazione fra i precedenti elementi. Ennio De Giorgi morì a Pisa il 25 ottobre del ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ISTITUTO NAZIONALE PER LE APPLICAZIONI DEL CALCOLO – ACCADEMIA NAZIONALE DELLE SCIENZE, DETTA DEI XL – PONTIFICIA ACCADEMIA DELLE SCIENZE – ACCADEMIA DELLE SCIENZE DI TORINO – EQUAZIONE ALLE DERIVATE PARZIALI
Mostra altri risultati Nascondi altri risultati su DE GIORGI, Ennio (4)
Mostra Tutti

potenziale

Dizionario delle Scienze Fisiche (1996)

potenziale potenziale [agg. e s.m. Der. del lat. potentialis, da potentia "potenza"] [LSF] (a) In contrapp. ad attuale, di ciò che ha la capacità di esplicarsi in qualcosa, ma non attuandosi ancora. [...] campi, il p. di un campo centrale la cui intensità vari con l'inverso del quadrato della distanza dai poli e nel quale poli omonimi si respingano; di carica e risultano dalla somma di elementi infinitesimi di tale densità presi non allo stesso ... Leggi Tutto
CATEGORIA: TEMI GENERALI – BIOFISICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – GEOFISICA – MECCANICA – RELATIVITA E GRAVITAZIONE – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su potenziale (2)
Mostra Tutti

Cardano, Girolamo

Il Contributo italiano alla storia del Pensiero: Scienze (2013)

Girolamo Cardano Elio Nenci Autore fra i più letti in Europa nel corso dei secoli 16° e 17°, Girolamo Cardano scrisse numerosissime opere di matematica, medicina, astrologia, filosofia. La sua opera [...] stelle di longitudine e latitudine conosciuta. Questioni di carattere elementare, ma alle quali presto, per lo meno dagli anni mutamento dal denso al raro e minore nel passaggio inverso. In secondo piano erano rimaste le considerazioni sulle ... Leggi Tutto
CATEGORIA: BIOGRAFIE – FISICA MATEMATICA
TAGS: EQUAZIONI DI SECONDO GRADO – CALCOLO DELLE PROBABILITÀ – MARCO VITRUVIO POLLIONE – SCIPIONE DAL FERRO – NICCOLÒ TARTAGLIA
Mostra altri risultati Nascondi altri risultati su Cardano, Girolamo (6)
Mostra Tutti
1 2 3 4 5 6 7 8
Vocabolario
gruppo
gruppo s. m. [dal germ. kruppa]. – 1. Insieme di più cose o persone, distinte l’una dall’altra, ma riunite insieme in modo da formare un tutto: un g. di case, di persone; un g. di stelle; un g. d’aziende; g. familiare, costituito dai membri...
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali