• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
104 risultati
Tutti i risultati [104]
Matematica [50]
Fisica [16]
Storia della matematica [17]
Analisi matematica [13]
Algebra [12]
Fisica matematica [10]
Filosofia [9]
Temi generali [8]
Geometria [7]
Storia della fisica [6]

DE GIORGI, Ennio

Dizionario Biografico degli Italiani (2014)

DE GIORGI, Ennio Enrico Moriconi Nacque l’8 febbraio del 1928 a Lecce figlio di Nicola e di Stefania Scopinich. La madre proveniva da una famiglia di navigatori di Lussino, mentre il padre era insegnante [...] generalmente enunciato dicendo che, tra tutti gli insiemi di uno spazio euclideo n-dimensionale, la sfera è quello che, a parità di connetta al dominio di interpretazione e, dall’altra, anche l’indicazione dei valori relativi a quel dominio che si ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ISTITUTO NAZIONALE PER LE APPLICAZIONI DEL CALCOLO – ACCADEMIA NAZIONALE DELLE SCIENZE, DETTA DEI XL – PONTIFICIA ACCADEMIA DELLE SCIENZE – ACCADEMIA DELLE SCIENZE DI TORINO – EQUAZIONE ALLE DERIVATE PARZIALI
Mostra altri risultati Nascondi altri risultati su DE GIORGI, Ennio (4)
Mostra Tutti

L'Ottocento: matematica. Algebra della logica

Storia della Scienza (2003)

L'Ottocento: matematica. Algebra della logica Massimo Mugnai Algebra della logica Logica e matematica: pensare e calcolare Sia nell'Antichità sia durante il Medioevo, la logica e la matematica si configurano [...] vera tecnica dimostrativa debba essere ricercata nello scritto euclideo, anziché nella logica della tradizione aristotelica. Al un clima culturale piuttosto diverso rispetto a quello che dominava nel Regno Unito agli inizi dell'Ottocento, vale a ... Leggi Tutto
CATEGORIA: ALGEBRA – LOGICA MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento Jeremy Gray Problemi di analisi complessa alla fine dell'Ottocento La teoria generale [...] disco. Inoltre questo disco aveva una struttura geometrica non euclidea invariante per l'azione dei gruppi e quindi la corrispondente della matematica nel XIX sec.; c'erano però due centri dominanti, le due Grandes Écoles di Parigi e l'Università di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L’informatica teorica

Storia della civiltà europea a cura di Umberto Eco (2014)

Giorgio Strano Il contributo è tratto da Storia della civiltà europea a cura di Umberto Eco, edizione in 75 ebook Negli anni Trenta del Novecento i logici riescono a dare uno statuto matematico alla [...] due millenni di storia – basti pensare all’algoritmo euclideo per determinare il minimo comune divisore – modelli astratti un algoritmo per determinare se l’equazione è risolubile nel dominio degli interi? Hilbert in realtà non usava la parola ... Leggi Tutto

limite

Enciclopedia della Matematica (2013)

limite limite nozione centrale nell’analisi matematica a cui vengono ricondotte le definizioni delle altre nozioni fondamentali (→ derivata, → integrale, → serie ecc.). Esprime in termini rigorosi l’esigenza [...] Y = R, ma la nozione si applica senza variazioni al caso euclideo multidimensionale X = Rn, Y = Rm, a spazi metrici o qualsiasi spazio topologico. Sia poi y = ƒ(x) una funzione X → Y di dominio D(ƒ) ⊆ X e x0 un punto di accumulazione di D(ƒ). Si dice ... Leggi Tutto
TAGS: TEOREMA DELLA → PERMANENZA DEL SEGNO – LIMITE DI UNA SUCCESSIONE – TEOREMA DEI CARABINIERI – PUNTO DI ACCUMULAZIONE – LIMITE DI UNA FUNZIONE

curva

Enciclopedia della Matematica (2013)

curva curva termine che indica in generale una linea qualsiasi, inclusa la retta. Più precisamente, una curva può essere costituita da una linea oppure da più linee, ciascuna delle quali è detta → ramo [...] variare di t in R. Se l’insieme di base (dominio) in cui varia il parametro è un intervallo, la insieme E (insieme base) di numeri reali e a valori nello spazio euclideo n-dimensionale Rn, φ: E → Rn. Tale funzione esplicitata rispetto alle ... Leggi Tutto
TAGS: FUNZIONI DIFFERENZIABILI – LEMNISCATA DI BERNOULLI – STORIA DELLA MATEMATICA – FUNZIONI GONIOMETRICHE – PUNTO DI DISCONTINUITÀ

anello

Enciclopedia della Matematica (2013)

anello anello struttura algebrica in cui due operazioni, dette generalmente addizione e moltiplicazione (ma, con abuso di linguaggio, anche somma e prodotto), godono di determinate proprietà le quali [...] a = bq + r, con v(r) < v(b). Un esempio di anello euclideo è dato dall’insieme degli interi (Z), ponendo v(a) = a (modulo di a). gli elementi sono multipli di un suo opportuno elemento). Un dominio d’integrità è un dvr se e solo se esiste una ... Leggi Tutto
TAGS: DOMINIO D’INTEGRITÀ – CAMPO DEI QUOZIENTI – GEOMETRIA ALGEBRICA – ANELLO DEI POLINOMI – STRUTTURA ALGEBRICA

Hilbert, spazio di

Enciclopedia della Matematica (2017)

Hilbert, spazio di Hilbert, spazio di in algebra lineare, particolare spazio di Banach, in cui la norma è indotta da un prodotto scalare. Dato uno spazio vettoriale X, che per generalità si suppone sul [...] Cn, dotati del prodotto scalare (detti spazio euclideo n-dimensionale, rispettivamente reale o complesso), agli spazi L2(Ω) delle funzioni a quadrato integrabile in un dominio Ω misurabile di Rn: con le proprie generalizzazioni (→ Sobolev, spazi ... Leggi Tutto
TAGS: TEOREMA DI → LAX-MILGRAM – SPAZIO PREHILBERTIANO – FORMA SESQUILINEARE – SERIE DI → FOURIER – GEOMETRIA EUCLIDEA
Mostra altri risultati Nascondi altri risultati su Hilbert, spazio di (1)
Mostra Tutti

MATEMATICA NON COMMUTATIVA

Enciclopedia Italiana - VI Appendice (2000)

MATEMATICA NON COMMUTATIVA La seconda metà del 20° secolo ha visto lo sviluppo di una molteplicità di ricerche matematiche, alcune motivate da considerazioni puramente interne, altre ispirate da problemi [...] " [11] dove K?,?L è il consueto prodotto scalare euclideo in Rn(Kx,yL5n∑j5₁xjyj). Infine, partendo dalle relazioni debole: ,a*Í,DË.2,DÍ,aË., dove Í,Ë sono nel dominio di D) è un operatore limitato. Ciò permette di esprimere algebricamente la ... Leggi Tutto

TENSORIALE, ALGEBRA e ANALISI

Enciclopedia Italiana - IV Appendice (1981)

TENSORIALE, ALGEBRA e ANALISI Dionigi Galletto Il calcolo t., sinonimo di calcolo differenziale assoluto (v. differenziale assoluto, calcolo, XII, p. 796; tensore, XXXIII, p. 497), i cui fondamenti [...] tensore doppio covariante simmetrico) e non degenere prende il nome di "s. v. euclideo". Il valore g(v, w) (v, w ∈ En) prende il nome sia nulla esternamente a un compatto K(l), contenuto nel dominio del sistema di coordinate {t1, ..., tp}, e tali ... Leggi Tutto
1 2 3 4 5 6 7 8 ... 11
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
miṡura
miṡura s. f. [lat. mensūra, der. di mensus part. pass. di metiri «misurare»]. – 1. a. Il valore numerico attribuito a una grandezza, ottenuto ed espresso come rapporto tra la grandezza data e un’altra della stessa specie assunta come unità (unità...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali