• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
6 risultati
Tutti i risultati [44]
Storia della matematica [6]
Matematica [24]
Analisi matematica [13]
Fisica [8]
Algebra [7]
Fisica matematica [5]
Storia della fisica [4]
Filosofia [4]
Metafisica [4]
Temi generali [4]

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] questo risultato, che appare in un corso tenuto nel 1829, Cauchy si serviva della identificazione tra i concetti di differenziabilità e continuità e, in effetti, in quella dimostrazione egli deriva sotto il segno di integrale. Dopo aver stabilito che ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] di questo tipo definita rigorosamente e aprì la strada alla comprensione della grande diversità dei concetti di continuità e differenziabilità. All'estremo opposto, la più semplice frontiera naturale che una funzione possa avere è un singolo punto, e ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

partizione

Enciclopedia on line

Araldica Le p. sono divisioni dello scudo mediante una o più linee orizzontali, verticali, diagonali o per mezzo di linee convergenti, al fine di creare campi diversi per accogliere stemmi o figure a seguito [...] di funzioni definite in V, una per ogni aperto del ricoprimento (tutte continue e anzi aventi una certa classe di differenziabilità), tali che ciascuna di esse sia zero al di fuori del corrispondente intorno del ricoprimento, e inoltre in ogni punto ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – GEOMETRIA – STORIA DELLA MATEMATICA – ARALDICA E TITOLI NOBILIARI
TAGS: CANTON DESTRO DELLA PUNTA – RELAZIONE DI EQUIVALENZA – VARIETÀ DIFFERENZIALE – TEORIA DEGLI INSIEMI – FUNZIONI GENERATRICI

La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni Craig Fraser Mario Miranda Calcolo delle variazioni Tra il 1870 e il 1920 si assiste al consolidamento degli argomenti [...] y))≤Cd(x,y). La lipschitzianità è una proprietà più forte della continuità, duttile quanto questa e molto vicina alla differenziabilità, un concetto che non è definito in qualunque spazio metrico, ma verso il quale coduce l'analisi delle soluzioni di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. I metodi numerici

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. I metodi numerici Peter Schreiber I metodi numerici Il XVII sec. è stato in generale un 'secolo geometrico'. A parte alcune considerazioni di carattere puramente numerico, [...] del comportamento della funzione (e quindi sulla curva o la superficie e sulle loro proprietà di continuità e differenziabilità) quando Waring, nel 1770, cominciò ad affrontare il problema in modo completamente diverso, con un metodo che se ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La civiltà islamica: condizioni materiali e intellettuali. Kalām e filosofia naturale

Storia della Scienza (2002)

La civilta islamica: condizioni materiali e intellettuali. Kalam e filosofia naturale Marwan Rashed Kalām e filosofia naturale Il rapporto tra Kalām e filosofia naturale è assai complesso e articolato; [...] ). Alcuni mutaziliti intuirono che si sarebbe potuta spingere più in là la deontologizzazione del movimento. La non differenziabilità dell'atomo rispetto al moto o alla quiete, ossia l'equivalenza fondamentale tra queste due esteriorizzazioni della ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – METAFISICA – STORIA DEL PENSIERO FILOSOFICO
Vocabolario
differenziabilità
differenziabilita differenziabilità s. f. [der. di differenziabile]. – Possibilità di essere differenziato, riconosciuto cioè differente; in matematica, per una funzione, l’essere differenziabile.
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali