ciclo limite
Luca Tomassini
Sia dx/dt=f(x,t) un sistema di equazioni differenziali ordinarie definito in una regione U⊂Mn, con M varietà differenziabile (per es. ℝn). Sia inoltre x(x0,t)= =Φ(x0,t) il [...] flusso da esso definito, ovvero d Φ(x0,t)/dt=f(Φ(x0,t),t).
Dato un punto x̃ di un’orbita Γ, si definiscono rispettivamente α-limite e ω-limite di x̃ i punti di accumulazione degli insiemi A={x∈U tali ...
Leggi Tutto
superficie Il contorno di un corpo, come elemento di separazione fra la parte di spazio occupata dal corpo e quella non occupata.
Diritto
Diritto di s. Diritto di fare e mantenere al di sopra del suolo [...] x(u, v), y(u, v), z(u, v), definite tutte in un dominio D del piano (u, v), si suppongono per lo più differenziabili e realizzano una corrispondenza biunivoca tra i punti della s. e i punti del dominio D. A questa distinzione si sovrappone una ...
Leggi Tutto
struttura
struttura [Der. del lat. structura, dal part. pass. structus di struere "costruire"] [LSF] La costituzione e la disposizione degli elementi che, in rapporto correlativo o funzionale fra loro, [...] v. strutture simplettiche su una varietà: V 697 c. ◆ [ALG] S. simplettica su una varietà infinito-dimensionale: v. varietà differenziabili infinito-dimensionali: VI 494 f. ◆ [ALG] S. topologica: lo stesso che topologia: v. spazio topologico: V 468 a ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] da G.I. Hori (1966).
La congettura di Poincaré. Stephen Smale dimostra la famosa congettura per n≥5: una varietà differenziabile di dimensione n che ha la stessa omotopia di una sfera di dimensione n è omeomorfa a tale sfera. Questo risultato gli ...
Leggi Tutto
vettore
vettóre [agg. m. e s.m. (per il f. → vettrice) Der. del lat. vector -oris "conducente, portatore", dal part. pass. vectus di vehere "condurre, portare"] [ALG] Ente che permette di descrivere [...] una curva, di una superficie o, in generale, di una varietà differenziabile. ◆ [ALG] V. tangente in un punto di una varietà differenziabile infinito-dimensionale: v. varietà differenziabili infinito-dimensionali: VI 493 f. ◆ [ALG] [RGR] V. tipo tempo ...
Leggi Tutto
transizione
transizióne [Der. del lat. transitio -onis "atto ed effetto del passare", dal supino transitum di transire (→ transitivo)] [LSF] Il passaggio di un sistema da uno stato a un altro, in genere [...] rutenio, rodio e palladio; osmio, iridio e platino (v. atomo: I 320 Tab. 30.2). ◆ [ALG] Funzione di t.: trasformazione differenziabile di coordinate su una varietà. ◆ [ELT] Funzione di t. dello stato e dell'uscita: v. sistemi, teoria dei: V 316 d, c ...
Leggi Tutto
serie
sèrie [Der. del lat. series, da serere "intrecciare"] [LSF] Successione continua e ordinata di enti, concreti o astratti, dello stesso genere, distinta in s. aperta oppure chiusa a seconda che, [...] della nozione di s. di potenze è manifesto se si nota che la s. di Taylor di una funzione infinitamente differenziabile è una s. di potenze: v. SVILUPPI IN SERIE. ◆ [CHF] S. elettrochimica, o dei potenziali elettrochimici normali: v. PILA CHIMICA ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1941-1950
1941-1950
1941
Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] Spencer Gasser, USA, Rockefeller Institute for Medical Research, New York, per le scoperte relative alle funzioni altamente differenziate di singole fibre dei nervi.
1945
Nobel per la fisica
Wolfgang Pauli, Austria, Princeton University, New Jersey ...
Leggi Tutto
Attributo di disciplina che utilizza nell’indagine teorica l’elaboratore elettronico come sistematico strumento di lavoro, per es. la meccanica c., la linguistica c.; si dice c. anche il procedimento che [...] numerico si possa ottenere come un=fn(dn), essendo f e fn due opportune leggi di corrispondenza. Allora, se f è differenziabile, si ottiene per K la seguente stima: K=∥f′(d)∥∥d∥/∥f(d)∥; analogamente si può associare al modello numerico un numero ...
Leggi Tutto
differenziabile
differenziàbile agg. [der. di differenziare]. – 1. Che si può differenziare, di cui è possibile riconoscere la o le differenze: oggetti, concetti, specie vegetali facilmente o difficilmente differenziabili. 2. In matematica,...
differenziamento
differenziaménto s. m. [der. di differenziare]. – L’atto, il fatto e il risultato del differenziare, o del differenziarsi: il progressivo d. di due caratteri simili, di due situazioni analoghe; d. didattico, la individualizzazione...