• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
27 risultati
Tutti i risultati [288]
Matematica [27]
Diritto [27]
Fisica [23]
Diritto civile [20]
Arti visive [20]
Temi generali [19]
Medicina [18]
Biologia [15]
Biografie [14]
Economia [14]

curvatura

Enciclopedia on line

Lo stato generico di un ente geometrico o fisico di scostarsi da un andamento rettilineo o piano. C. di una curva piana Elemento definito punto per punto della curva, che misura la rapidità con la quale [...] , quando P1 tenda a P. La prima c. di una linea sghemba C si può esprimere nella forma: mediante le derivate seconde delle funzioni x(s), y(s), z(s) che forniscono una rappresentazione parametrica della linea C in funzione dell’ascissa curvilinea ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – RELATIVITA E GRAVITAZIONE – GEOMETRIA
TAGS: TEORIA DELLA RELATIVITÀ – CERCHIO OSCULATORE – ASCISSA CURVILINEA – FORMULA DI EULERO – CURVA SGHEMBA
Mostra altri risultati Nascondi altri risultati su curvatura (4)
Mostra Tutti

VARIAZIONI, CALCOLO DELLE

Enciclopedia Italiana (1937)

VARIAZIONI, CALCOLO DELLE. Leonida Tonelli - È quel ramo dell'analisi matematica che studia i problemi di massimo e minimo (v. massimi e minimi) relativi a quantità variabili, che si presentano sotto [...] che le equazioni x = x (t), y = y (t) della curva estremante siano tali da ammettere sempre finite anche le derivate seconde x″ (t), y″ (t), C. Weierstrass mostrò che le due equazioni delle estremali sono equivalenti all'unica equazione differenziale ... Leggi Tutto
Mostra altri risultati Nascondi altri risultati su VARIAZIONI, CALCOLO DELLE (4)
Mostra Tutti

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] parziali miste segue dalla possibilità di scambiare l'ordine dei limiti con i quali si calcolano le derivate seconde; un procedimento che ben presto destò sospetti e stimolò alcuni tentativi, peraltro non riusciti, di giustificarne la validità ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Nodi e fisica

Enciclopedia del Novecento II Supplemento (1998)

Nodi e fisica Louis H. Kauffman Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] con questo operatore, l'equazione di Schrödinger diviene un'equazione nella derivata prima rispetto al tempo e nelle derivate seconde rispetto allo spazio (V rappresenta l'energia potenziale e l'operatore che gli corrisponde dipende dalla particolare ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMETRIA
TAGS: TEORIA QUANTISTICA DEI CAMPI – FILOSOFIA DELLA MATEMATICA – EQUAZIONE DI SCHRÖDINGER – CALCOLO DELLE VARIAZIONI – RELAZIONE DI EQUIVALENZA

L'Ottocento: matematica. Calcolo delle variazioni

Storia della Scienza (2003)

L'Ottocento: matematica. Calcolo delle variazioni Craig Fraser Calcolo delle variazioni Il problema di Euler Nel 1744 Leonhard Euler formulò il problema principale del calcolo delle variazioni nei [...] dell'ottimizzazione dell'integrale ∫baf (x,y,y(1),y(2))dx, nel quale la funzione integranda dipende anche dalle derivate seconde di y, è equivalente al problema di Lagrange che ottimizza l'integrale sottoponendo la coppia di funzioni y1 e y2 al ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Convessità

Enciclopedia della Scienza e della Tecnica (2007)

Convessità Arrigo Cellina La convessità è un concetto della matematica elementare; le parole concavo e convesso fanno parte del linguaggio quotidiano. Eppure questo semplice concetto, unito ad altre [...] deve essere convesso. In ℝn le funzioni convesse sufficientemente liscie possono essere caratterizzate in termini della matrice delle derivate seconde: una funzione è convessa se e solo se la forma quadratica 14] formula è non negativa. Dalla ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – FUNZIONI A QUADRATO SOMMABILE – SPAZIO LOCALMENTE CONVESSO – CALCOLO DELLE VARIAZIONI – FUNZIONE DIFFERENZIABILE

La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni Craig Fraser Mario Miranda Calcolo delle variazioni Tra il 1870 e il 1920 si assiste al consolidamento degli argomenti [...] la via verso la soluzione del problema, ove fosse stato possibile garantire per questa il carattere lipschitziano delle derivate seconde. Lungimirante fu l'atteggiamento di Hilbert che si accontentò di provare l'esistenza del minimo in classi di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Caccioppoli, Renato

Il Contributo italiano alla storia del Pensiero: Scienze (2013)

Renato Caccioppoli Luca Dell'Aglio Figura chiave nello sviluppo del pensiero matematico in Italia durante la prima parte del Novecento, le sue ricerche spaziano nei vari rami dell’analisi matematica, [...] inoltre dimostrata l’analiticità delle soluzioni di equazioni analitiche di tipo ellittico in due variabili, dotate di derivate seconde continue. Questo risultato, riguardante uno dei celebri problemi, il XIX, enunciati da David Hilbert (1862-1943 ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: ISTITUTO NAZIONALE PER LE APPLICAZIONI DEL CALCOLO – EQUAZIONI ALLE DERIVATE PARZIALI – GEOMETRIA DIFFERENZIALE – EQUAZIONI DIFFERENZIALI – ACCADEMIA DEI LINCEI
Mostra altri risultati Nascondi altri risultati su Caccioppoli, Renato (4)
Mostra Tutti

modello

Enciclopedia on line

In arte e architettura, persona od oggetto che l’artista ritrae o riproduce, oppure esemplare preparatorio dell’opera finale. Nel linguaggio scientifico, costruzione schematica, puramente ipotetica o realizzata [...] equazioni algebriche, differenziali (ordinarie o alle derivate parziali), alle differenze finite, stocastiche; siano U(α) e U(β) due gruppi, il primo abeliano e il secondo no. Essi sono entrambi m. di G ma non elementarmente equivalenti perché la ... Leggi Tutto
CATEGORIA: ARCHITETTURA E URBANISTICA – SCULTURA – FILOSOFIA DEL LINGUAGGIO – LINGUISTICA GENERALE – ECOLOGIA – ALGEBRA – GEOMETRIA – LOGICA MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – DIRITTO PRIVATO – STORIA E FILOSOFIA DEL DIRITTO – METODI TEORIE E PROVVEDIMENTI – EPISTEMOLOGIA – FILOSOFIA DEL DIRITTO – FILIERE STRUMENTI E TECNICHE DELLA PRODUZIONE INDUSTRIALE
TAGS: ORGANIZZAZIONE MONDIALE PER LA PROPRIETÀ INTELLETTUALE – EQUAZIONE DIFFERENZIALE ORDINARIA – SISTEMA DI EQUAZIONI LINEARI – INSIEME DEI NUMERI NATURALI – TEOREMA DI LÖWENHEIM-SKOLEM
Mostra altri risultati Nascondi altri risultati su modello (6)
Mostra Tutti

massimi e minimi

Enciclopedia on line

Espressione con cui si indica l’argomento di molte ricerche matematiche, intese a individuare le massime e le minime grandezze tra un certo numero di grandezze assegnate, oppure i valori massimi e minimi [...] f (x, 0) e f(0, y). Consideriamo, per ultimo, il caso di una funzione di più variabili reali che ammetta tutte le derivate parziali prime e seconde nell’intorno di un punto P0. In queste ipotesi, se in P0 vi è un massimo (minimo) della f (P), in P0 ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
TAGS: METODO DEI MOLTIPLICATORI DI LAGRANGE – FUNZIONI DI DUE O PIÙ VARIABILI – INSIEME DI DEFINIZIONE – SPAZIO TOPOLOGICO – FUNZIONE CONTINUA
1 2 3
Vocabolario
secóndo¹
secondo1 secóndo1 agg. e s. m. [lat. secŭndus, der. di sequi «seguire»; propr. «che segue, che non offre resistenza», detto dapprima della corrente e del vento, quindi, per contrapp. ad adversus, «favorevole, conforme»; con diverso sviluppo...
secondaménte
secondamente secondaménte avv. [der. dell’agg. secondo1], ant. – In secondo luogo, per la seconda volta: s. è da vedere come ... (Dante); Noi eravamo al sommo de la scala, Dove s. si risega Lo monte (Dante).
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali