L'Ottocento: matematica. Equazioni differenziali alle derivateparziali
Thomas Archibald
Equazioni differenziali alle derivateparziali
Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] dα=0, ossia du=0 (supponendo, come egli afferma, che u sia continua). Ciò, a sua volta, implica che tutte le derivateparziali siano uguali a 0 in un punto di massimo.
In modo simile Cauchy definiva i differenziali di ordine superiore, che utilizzava ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivateparziali
Haïm Brezis
Felix Browder
Equazioni differenziali alle derivateparziali
Lo studio delle equazioni [...] di idee matematiche in aree attive di ricerca della matematica pura.
Le origini della teoria moderna delle equazioni alle derivateparziali e l'opera di Poincaré
Fin verso il 1870 lo studio delle EDP riguardava soprattutto i metodi euristici per ...
Leggi Tutto
Biologia
C. morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i c. morfogenetici dell’arto posteriore danno origine [...] carica puntiforme.
C. conservativo
C. vettoriale nel quale le componenti vx, vy, vz del vettore v del c. coincidono con le derivateparziali di una medesima funzione monodroma, U, del posto, detta potenziale: vx = δU/δx, vy = δU/δy, vz = δU/δz; si ...
Leggi Tutto
Matematica
Ente geometrico che si estende nel senso della sola lunghezza; è tale, per es., la traiettoria d’un punto in moto, l’intersezione di due superfici (per es., di una sfera con un piano) ecc.; [...] . In base a tale schema si possono ottenere le equazioni delle l. che risultano essere equazioni differenziali alle derivateparziali nelle due variabili t (tempo) e x. Tali equazioni risultano molto complesse e di non semplice soluzione. Grandi ...
Leggi Tutto
Espressione con cui si indica l’argomento di molte ricerche matematiche, intese a individuare le massime e le minime grandezze tra un certo numero di grandezze assegnate, oppure i valori massimi e minimi [...] fig. 4); b) punti di γ (punti Q e R); c) punti interni ad A nei quali non esiste una almeno delle due derivateparziali prime (punto V ). Un punto (ξ, η) della prima categoria è un punto estremante se in esso è positivo il determinante hessiano della ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1971-1980
1971-1980
1971
I problemi NP-completi. L'informatico americano Stephen Cook dà il primo esempio di problema algoritmico NP-completo. La classe NP [...] H. Rabinowitz enuncia uno dei suoi più famosi teoremi. Oltre che per le applicazioni allo studio di equazioni alle derivateparziali, questo teorema è diventato famoso per la profondità di intuizione geometrica che sottende e per la grande semplicità ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] un settore di ricerca attivo ancora oggi. Nel corso della sua carriera Serrin si occuperà principalmente di equazioni alle derivateparziali e di evoluzione, arrivando, nel 1973, a vincere il premio Birkoff per la matematica applicata.
Il teorema di ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] Svezia (insegnerà poi nell'Università di Stoccolma), compie importanti ricerche sulla teoria delle equazioni differenziali alle derivateparziali, che dieci anni dopo gli varranno la medaglia Fields. Egli compirà inoltre importanti studi di analisi ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1991-2000
1991-2000
1991
Il sistema operativo Linux. Uno studente finlandese, Linus Torvalds, sviluppa il sistema operativo Linux. Il sistema può essere distribuito, [...] Fields
Pierre-Louis Lions, Francia, Université de Paris-Dauphine, per i lavori sulle equazioni differenziali alle derivateparziali.
Jean-Christophe Yoccoz, Francia, Université de Paris-Sud, per i risultati ottenuti nella matematica dei sistemi ...
Leggi Tutto
parziale
agg. [dal lat. tardo partialis, der. di pars partis «parte»]. – 1. a. Che si riferisce solo a una parte, o che costituisce una parte, o si fa solo in parte e sim. (di solito in contrapp. a totale): un’eclissi p. di sole, di luna;...
parzialita
parzialità s. f. [der. di parziale]. – 1. non com. Carattere di ciò che è parziale, cioè non completo (generalm. in contrapp. a totalità): è difficile azzardare previsioni, vista la p. dei dati finora pervenuti; la proposta è stata...