In logica matematica, data una teoria formale, occorre distinguere un teorema sintattico di f. da uno semantico. Il primo si riferisce ai concetti di derivabilità e di non contraddittorietà, il secondo [...] a quelli di conseguenza logica e di soddisfacibilità. Del teorema sintattico di f. si hanno due formulazioni equivalenti: a) un’espressione A è derivabile da un insieme P di premesse se e solo se A è ...
Leggi Tutto
differenziabile
differenziàbile [Der. di differenziale] [ANM] Si dice di ente che può essere sottoposto alla differenziazione (←). ◆ [ANM] Funzione d. di ordine r: una funzione di cui esistono le derivate [...] fino alla r-esima (è espressione impropria, confondendosi differenziabilità e derivabilità); per essa si usa il simb. Cr; se r=∞ si usa il simb. C∞, mentre si usa il simb. Cω per indicare la classe delle funzioni analitiche, cioè le funzioni ...
Leggi Tutto
In genere, qualsiasi cosa che avvolge strettamente.
Matematica
Inviluppo di una famiglia di curve piane È una curva L tale che per ogni suo punto P passi una e una sola curva della famiglia data avente [...] tangente della L. Se f(x, y, t)=0 è l’equazione delle curve Ct della famiglia, sotto opportune condizioni di continuità, derivabilità ecc., l’i. esiste, e la sua equazione si ottiene eliminando il parametro t dal sistema
[1]
dove ft è la derivata ...
Leggi Tutto
Lebesgue Henry-Leon
Lebesgue 〈lëbèg〉 Henry-Léon [STF] (Beauvais 1875 - Parigi 1941) Prof. di matematica nell'univ. di Poitiers e poi di Parigi; socio straniero dei Lincei (1925). ◆ [ANM] Decomposizione [...] concetto di misura di un insieme in uno spazio metrico: v. misura e integrazione: IV 2 f. ◆ [ANM] Teorema della derivabilità di L., o teorema di derivazione di L.-Vitali: afferma che ogni funzione continua e a variazione limitata ha derivata finita ...
Leggi Tutto
VARIAZIONI, CALCOLO DELLE.
Leonida Tonelli
- È quel ramo dell'analisi matematica che studia i problemi di massimo e minimo (v. massimi e minimi) relativi a quantità variabili, che si presentano sotto [...] è il seguente: fra tutte le funzioni y (x) definite nell'intervallo (a, b), soddisfacenti a opportune condizioni di continuità e derivabilità, tali che y (a) = pa, y (b) = pb, e per le quali l'integrale
assume un dato valore, trovare quella che ...
Leggi Tutto
matrice jacobiana
Luca Tomassini
Generalizzazione al caso di funzioni di più variabili a valori vettoriali del concetto di derivata di una funzione scalare g:ℝ→ℝ. Più precisamente, si chiama matrice [...] h∈ℝμ e
[3] formula.
Si presenta qui una distinzione fondamentale rispetto al caso scalare: l’esistenza di J, detta derivabilità, non è in realtà sufficiente a garantire che la [2] sia verificata. Se questo è il caso, f è detta differenziabile ...
Leggi Tutto
Carlo Cellucci
Teologo cattolico, logico e matematico (Praga 1781 - ivi 1848). Figlio di un emigrato italiano nativo di Nesso, nel 1805 fu nominato prof. di filosofia della religione all'univ. di Praga. [...] ma in alcuni sottoprodotti di tale costruzione, in particolare nell'introduzione di nozioni come quelle di validità e di derivabilità che rivestono grande importanza per la logica moderna. Nella Paradoxien il B. si occupa dei fondamenti della teoria ...
Leggi Tutto
dipendente
dipendènte [agg. Der. del part. pres. dependens -entis del lat. dependere "derivare da, dipendere", comp. di de- e pendere] [LSF] Di ente che abbia una relazione di dipendenza da un altro: [...] xr)]=0 identicamente, cioè per qualsiasi scelta delle x nel campo A. Sotto opportune condizioni di continuità e derivabilità, la condizione necessaria e sufficiente affinché m funzioni di altrettante variabili siano funzionalmente d. è che si annulli ...
Leggi Tutto
teoremi di indecidibilità
Silvio Bozzi
In logica matematica, risultati che affermano che una data teoria formalizzata T non è decidibile, vale a dire non ammette un algoritmo in grado di stabilire in [...] , per es., il problema della fermata per macchine di Turing, il problema della lambda-convertibilità o quello della derivabilità di parole entro sistemi di Post e così via. Di fatto questi problemi risultano intertraducibili con questioni sull ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I teoremi di incompletezza di Godel
Carlo Cellucci
I teoremi di incompletezza di Gödel
Nei giorni 5-7 settembre 1930 ebbe luogo a Königsberg [...] introdurre alcune assunzioni sulla formula PrT(b). Supponiamo che, per ogni enunciato φ e ψ, valgano le seguenti condizioni, dette le condizioni di derivabilità
D1) Se T⊦φ allora S⊦PrT(⌈φ⌉)
D2) S⊦PrT(⌈φ⌉)∧PrT(⌈φ→ψ⌉)→PrT(⌈ψ⌉)
D3) S⊦PrT(⌈φ⌉)→PrT ...
Leggi Tutto
calcolo1
càlcolo1 s. m. [dal lat. calcŭlus, propr. «pietruzza» (cfr. càlcolo2), attrav. il sign. di «gettone per fare i conti»]. – 1. a. Successione più o meno lunga di operazioni atte a fornire la soluzione di un dato problema aritmetico,...