Lebesgue Henry-Leon
Lebesgue 〈lëbèg〉 Henry-Léon [STF] (Beauvais 1875 - Parigi 1941) Prof. di matematica nell'univ. di Poitiers e poi di Parigi; socio straniero dei Lincei (1925). ◆ [ANM] Decomposizione [...] concetto di misura di un insieme in uno spazio metrico: v. misura e integrazione: IV 2 f. ◆ [ANM] Teorema della derivabilità di L., o teorema di derivazione di L.-Vitali: afferma che ogni funzione continua e a variazione limitata ha derivata finita ...
Leggi Tutto
dipendente
dipendènte [agg. Der. del part. pres. dependens -entis del lat. dependere "derivare da, dipendere", comp. di de- e pendere] [LSF] Di ente che abbia una relazione di dipendenza da un altro: [...] xr)]=0 identicamente, cioè per qualsiasi scelta delle x nel campo A. Sotto opportune condizioni di continuità e derivabilità, la condizione necessaria e sufficiente affinché m funzioni di altrettante variabili siano funzionalmente d. è che si annulli ...
Leggi Tutto
Fisica matematica
Andrei Tjurin
Vieri Mastropietro
L'interazione fra fisica e matematica è divenuta ancora più proficua negli ultimi anni. Nelle ricerche sulle interazioni fondamentali (gravitazionali, [...] come l'ipotesi di analiticità nelle azioni e negli angoli per la hamiltoniana possa essere rilassata e sostituita con quella di derivabilità. In particolare si richiede che H appartenga a Cn, con n>2τ+2 (Moser 1962). Tale dimostrazione usa ancora ...
Leggi Tutto
calcolo1
càlcolo1 s. m. [dal lat. calcŭlus, propr. «pietruzza» (cfr. càlcolo2), attrav. il sign. di «gettone per fare i conti»]. – 1. a. Successione più o meno lunga di operazioni atte a fornire la soluzione di un dato problema aritmetico,...