Matematico (Parigi 1688 - ivi 1744), abate. Amico di Malebranche, fu membro associato dell'Accademia delle scienze di Parigi. Proseguì le ricerche di I. Newton, di C. Maclaurin e di J. Stirling sulle curve [...] algebriche piane, dando una prima classificazione delle curve di 4º ordine (in base al numero dei punti multipli e al loro tipo, agli asintoti, ecc.). ...
Leggi Tutto
VOLUME
Giuseppe SCORZA DRAGONI
La nozione di volume è per i solidi, cioè per le porzioni di spazio delimitate da superficie (semplici, chiuse e regolari), l'analogo di quello che la nozione di area [...] di Riemann. - Nel caso delle superficie, accanto alla determinazione dell'area di un pezzo di piano vi è anche luogo a considerare quella dell'area di una superficie curva.
Nel caso dei solidi non si presenta nulla di equivalente, almeno fino a tanto ...
Leggi Tutto
ZEUTHEN, Hieronymus Georg
Alessandro Terracini
Matematico, nato a Grimstrup presso Varde (Jütland) il 15 febbraio 1839, morto a Copenaghen il 5 gennaio 1920. Studiò all'università di Copenaghen; nel [...] di corrispondenza, dato da Chasles sulla retta e da M. Cayley-A. von Brill su una curva algebrica qualunque, a corrispondenze nel piano, nello spazio, su una superficie. Nella teoria delle superficie algebriche l'invariante di Zeuthen-Segre (poi ...
Leggi Tutto
La civilta islamica: condizioni materiali e intellettuali. Dal greco all'arabo: trasmissione e traduzione
Roshdi Rashed
Dal greco all'arabo: trasmissione e traduzione
Gli storici delle scienze e della [...] di al-Kindī, come Ibn ῾Īsā (un autore di secondo piano); dall'altro lato, esso spinge a ridurre al solo valore storico la determinazione delle aree e dei volumi delle superfici e dei solidi curvi, ecc. È sufficiente leggere la lista delle opere di al- ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. La matematica ebraica
Tony Lévy
La matematica ebraica
Gli studiosi ebrei arabofoni che vivevano nei paesi dell'Islam rappresentavano una [...] -basīṭa wa-'l-kuriyya (Libro per conoscere l'area delle figure piane e sferiche, noto nel mondo latino con il titolo Liber trium epoca erano in corso ricerche molto avanzate nella geometria delle curve e delle superfici. Ci riferiamo in primo luogo a ...
Leggi Tutto
L'Ottocento: matematica. Immagini della matematica nell'Ottocento
Umberto Bottazzini
Immagini della matematica nell'Ottocento
Il panorama della matematica negli ultimi decenni del XIX sec. è per molti [...] insegnante, di cui sono chiamati a far parte matematici di primo piano come Charles-François Sturm (1803-1855), Joseph Liouville (1809- dallo sviluppo pletorico della geometria infinitesimale delle curve e delle superfici" (Gispert 1996, p ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
La rinascita delle matematiche
Pier Daniele Napolitani
Il problema
Quando, sul finire del 17° sec., nasce il nuovo universo newtoniano, al tempo stesso vedono la luce nuovi oggetti matematici (polinomi, [...] della matematica ellenistica si concentrava piuttosto sulla geometria delle curve (o ‘geometria di posizione’).
Se a questo come compreso fra 3 10/71 e 3 1/7; l’Equilibrio dei piani, in cui si dimostrava la legge della leva e si dava il calcolo dei ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. La nascita della matematica moderna: 1600-1700
Enrico Giusti
La nascita della matematica moderna: 1600-1700
Costringere un movimento storico nell'ambito [...] del particolare problema in esame. I geometri del Seicento invece operano con classi generali: le figure piane e solide, le curve geometriche; su queste classi essi eseguono le loro dimostrazioni, che per essere generali risulteranno valide in ogni ...
Leggi Tutto
sezione
sezióne [Der. del lat. sectio -onis, dal part. pass. sectus di secare "tagliare"] [LSF] [ALG] (a) Operazione fondamentale, insieme alla proiezione, della geometria proiettiva, che consiste nel-l'intersecare [...] ortogonale alla direzione della corrente elettrica nel conduttore. ◆ [ALG] S. aurea: → aureo. ◆ [ALG] S. coniche: le curve s. di un cono con un piano, dette più correntemente coniche. ◆ [ALG] S. differenziabile: v. fibrati: II 570 d. ◆ [FSN] S. d ...
Leggi Tutto
iperbolico
iperbòlico [agg. (pl.m. -ci) Der. di iperbole] [ALG] Cilindro i.(propr., cilindro a sezioni i.): cilindro quadrico tale che tutte le sue sezioni piane siano iperboli (v. fig). ◆ [ANM] Coseno [...] improprio di r. ◆ [ALG] Punto i. di una superficie: tale che il relativo piano tangente interseca la superficie secondo una linea che ha in quel punto un punto doppio nodale: v. curve e superfici: II 78 f. ◆ [ANM] Seno i.: una delle funzioni i. (v ...
Leggi Tutto
curva1
curva1 s. f. [femm. sostantivato dell’agg. curvo]. – 1. a. Nel linguaggio com., ogni linea che non sia retta. b. In matematica, sinon. di linea, intendendosi quindi anche la retta come una particolare curva. Molte curve di tipo particolare...
piano1
piano1 agg. e avv. [lat. planus «di superficie uguale; facile, chiaro, intelligibile»]. – 1. agg. a. Che presenta una superficie di andamento uniforme, senza avvallamenti o rilievi: via p., senza salite o discese; terreno p.; il lago...