La Rivoluzione scientifica: i domini della conoscenza. Dalla Geometrie al calcolo: il problema delle tangenti...
Enrico Giusti
Dalla Géométrie al calcolo: il problema delle tangenti e le origini del [...] un numero rilevante di radicali.
La situazione è per molti versi paradossale. Infatti queste curve sono in tutto e per tutto delle curvealgebriche, e Fermat aveva insegnato come sbarazzarsi dei radicali e ridurne l'equazione a forma polinomiale ...
Leggi Tutto
Numeri, teoria dei
LLarry Joel Goldstein
di Larry Joel Goldstein
SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] tali che 4x3−g2x−g3 non si fattorizzi sui razionali. Allora l'equazione diofantea
y2=4x3−g2x−g3 (24)
definisce una curvaalgebrica C. In altre parole, a questa equazione corrisponde l'insieme C delle coppie (x, y) di numeri complessi che soddisfano l ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] dal cammino che congiunge i loro estremi.
Il principale oggetto di studio era la teoria delle funzioni su una curvaalgebrica. La curva era concepita in due modi che Riemann cercò di amalgamare senza molto successo: quale oggetto definito da una ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. L'algebra e il suo ruolo unificante
Roshdi Rashed
L'algebra e il suo ruolo unificante
La seconda metà del VII sec. vede il costituirsi [...] in al-Qalaṣādī), ma soprattutto un nuovo programma matematico che andasse al di là delle coniche per intraprendere lo studio delle curvealgebriche tramite le loro equazioni. I veri successori di al-Ḫayyām e di al-Ṭūsī si chiamano insomma Descartes e ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] era ben consapevole che con esso si poteva ricoprire l'intero piano complesso, tuttavia quando era passato al caso di una curvaalgebrica, o di una superficie di Riemann di genere superiore, ottenendo dopo i tagli un poligono con 4p lati, non si era ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] teoria dei codici e geometria algebrica (più precisamente, con i divisori sulle curvealgebriche) legami reciproci, ed 1990. L'incontro tra le sue ricerche sulle tracce delle algebre di von Neumann e le rappresentazioni del gruppo delle trecce di ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria
Emily Grosholz
La rivoluzione cartesiana e gli sviluppi della geometria
La rivoluzione [...] , ma oltre la quale non può avventurarsi. È da qui che trae origine la distinzione che Descartes opera fra curvealgebriche e curve trascendenti, le une da includere nella geometria, le altre, invece, da bandire.
Il canone intuizionista cartesiano è ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] superficie di genere 1 è un toro e cosí via (fig. 1).
Il genere della superficie di Riemann S associata a una curvaalgebrica piana C si calcola facilmente. Supponiamo che C sia di grado d e che
incontri la retta all'infinito in d punti distinti ...
Leggi Tutto
L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] con l'ausilio di strumenti geometrici che geometria affrontata con strumenti algebrici. James Stirling (1692-1770) pubblicò nel 1717 un libro sulle curvealgebriche piane ‒ Lineae tertii ordinis neutonianae ‒, con particolare riguardo a quelle di ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] matematica, altri l'apprezzavano per il suo grande rigore. Per alcuni anni intorno al 1900 la teoria delle curvealgebriche si occupò prevalentemente di punti singolari. Era anche troppo facile avere un'intuizione geometrica sulla natura di questi ...
Leggi Tutto
curva1
curva1 s. f. [femm. sostantivato dell’agg. curvo]. – 1. a. Nel linguaggio com., ogni linea che non sia retta. b. In matematica, sinon. di linea, intendendosi quindi anche la retta come una particolare curva. Molte curve di tipo particolare...
omaloidico
omaloìdico (o omalòidico) agg. [comp. del gr. ὁμαλός «uguale, uniforme» e -oide, con suff. aggettivale] (pl. m. -ci). – In geometria algebrica, rete o., sistema lineare di infinite curve algebriche piane razionali di ordine n, i...