La civilta islamica: antiche e nuove tradizioni in matematica. Geometria: la tradizione euclidea rivisitata
Pascal Crozet
Geometria: la tradizione euclidea rivisitata
Introduzione
Fin dai primi sviluppi [...] divisione di un'altra retta data in un numero arbitrario di segmenti; algebricamente essa può essere interpretata così: a(b+c+d+…)=ab+ac+ di successioni di poligoni per delimitare il cerchio o altre curve. Tale pratica produsse a volte, in modo quasi ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] Tale distanza è data da:
dove D=ds−1 e A è l'algebra delle funzioni lisce. Si osservi che ds ha la dimensione di una lunghezza γ(z)=γ-(z)-1γ(z) z∈C
dove C⊂P1(ℂ) è un curva semplice liscia, C− la componente del complementare di C che contiene ∞∉C e ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Algebra, geometria, indivisibili
Enrico Giusti
Primi progressi nell’algebra
Dopo un periodo di gestazione lungo tre secoli, l’algebra è la prima disciplina in cui nel Cinquecento si registrano sostanziali [...] Al contrario, anche se non disdegna di studiare casi singoli, l’oggetto della geometria cartesiana è la curva ‘generica’, espressa mediante un’equazione algebrica in due variabili F(x,y)=0, e il problema diventa quello di trovare dei metodi generali ...
Leggi Tutto
Nodi e fisica
Louis H. Kauffman
Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] cuore: vorremmo poter calcolare numeri (o entità algebriche come polinomi) a partire da un qualsiasi 'ultima è chiamata ‛norma' dello stato ed è definita come il numero di curve chiuse che compongono S, ‛meno uno'; così nell'esempio di cui sopra si ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] teoremi di dualità ponevano un nuovo problema nel contesto algebrico dei gruppi di omologia. Per Poincaré, la dualità due punti di S2 e considerandone le controimmagini, che in generale sono curve chiuse: γ(f) è dato allora dal loro linking number, e ...
Leggi Tutto
Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] dal gruppo simmetrico Sm (primo teorema). Inoltre l'azione dell'algebra del gruppo simmetrico ha un nucleo, se m>n, generato queste idee per costruire varietà di moduli di curve, superfici, fibrati vettoriali.
Il teorema delle slice ...
Leggi Tutto
L'Ottocento: matematica. Calcolo geometrico
Paolo Freguglia
Gert Schubring
Calcolo geometrico
Uno degli aspetti che hanno caratterizzato lo sviluppo della matematica nell'Ottocento è rappresentato [...] pure la posizione del baricentro, che potrà quindi descrivere curve di vario tipo. Analogamente avviene per lo spazio. di William K. Clifford (1845-1879), il quale lo introdusse nelle algebre che da lui prendono il nome e con le quali sono precisati ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il calcolo geometrico
Paolo Freguglia
Gert Schubring
Il calcolo geometrico
Quando pubblicò il trattato Die lineale Ausdehnungslehre (La teoria [...] autore di vari trattati sulla teoria generale delle curve nello spazio, presentata senza alcun collegamento, per quaternioni, nel suo libro (ristampato nel 1988) studiò le algebre associative e non associative (Schubring 1996b).
Infine, fu Josiah ...
Leggi Tutto
curva1
curva1 s. f. [femm. sostantivato dell’agg. curvo]. – 1. a. Nel linguaggio com., ogni linea che non sia retta. b. In matematica, sinon. di linea, intendendosi quindi anche la retta come una particolare curva. Molte curve di tipo particolare...
omaloidico
omaloìdico (o omalòidico) agg. [comp. del gr. ὁμαλός «uguale, uniforme» e -oide, con suff. aggettivale] (pl. m. -ci). – In geometria algebrica, rete o., sistema lineare di infinite curve algebriche piane razionali di ordine n, i...