STORIA DELLA MATEMATICA
Luigi Borzacchini
STORIA DELLA MATEMATICA
Il tempo della scienza senza tempo
La matematica è la più antica e la più immutabile delle discipline. Si può dire che la matematica [...] , accade che più soluzioni si identifichino. Per esempio Cartesio si pone il problema della costruzione algebrica della normale a una curva in un punto P (chiaramente equivalente alla costruzione della tangente). Considerando l’intersezione tra la ...
Leggi Tutto
RELATIVITÀ
Christian Moller
Tullio Regge
Eugenio Garin
Relatività di Christian Møller
sommario: 1. Introduzione e panorama storico: a) il principio di relatività speciale. Sistemi inerziali; b) relatività [...] dunque essi formano in modo naturale un'algebra di Lie che è isomorfa all'algebra di Lie del gruppo delle isometrie.
b al presente 3p+c2ρ>0, deve essere Ë〈0, per cui la curva di espansione dell'universo R(t) ha la concavità rivolta verso il basso. ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. Meccanica e scienza del moto
Domenico Bertoloni Meli
Meccanica e scienza del moto
Il contesto intellettuale, istituzionale e sociale
Scrivere [...] La stessa matematica subì in questo periodo profonde trasformazioni, come la nascita dell'algebra moderna e l'invenzione della geometria analitica, la scoperta di nuove curve ‒ fra cui la cicloide ‒, la scoperta delle serie infinite, il calcolo e la ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] è ancora uno dei migliori testi sull'argomento.
Curve su superfici. Il matematico giapponese Kunihiko Kodaira formula . K.F. Roth dimostra il seguente teorema: dato un irrazionale algebrico α e detta β la sua misura di irrazionalità, definita come ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Geometria: la tradizione euclidea rivisitata
Pascal Crozet
Geometria: la tradizione euclidea rivisitata
Introduzione
Fin dai primi sviluppi [...] divisione di un'altra retta data in un numero arbitrario di segmenti; algebricamente essa può essere interpretata così: a(b+c+d+…)=ab+ac+ di successioni di poligoni per delimitare il cerchio o altre curve. Tale pratica produsse a volte, in modo quasi ...
Leggi Tutto
Scienza greco-romana. Euclide e la matematica del IV secolo
Reviel Netz
Euclide e la matematica del IV secolo
Sappiamo del IV sec. a.C. più di quanto non sappiamo del V, ma è sempre molto poco. Fra [...] ora, alla luce delle conoscenze matematiche attuali, la ragione per la quale queste curve hanno le proprietà richieste da Menecmo. Oggi esse sono ‘definite’ dalle loro proprietà algebriche, ma non era così nell’Antichità. Tor ne remo su questo punto ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero - Tecnica (2013)
La sfida della cupola
Roberto Masiero
David Zannoner
Le cupole e la scienza
L’ideazione e la costruzione delle cupole, dal Quattrocento al Settecento, ha alimentato la sperimentazione e la formalizzazione [...] ’ costruttiva in età barocca (2004). Se è vero che il Barocco è l’età del grande sviluppo dell’algebra e del calcolo infinitesimale, e se «le curve dei grandi matematici del Seicento sono quasi sempre coniche: ellissi, parabole, iperboli; oppure ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] noto anche per essere stato il primo ebreo ad affermarsi nell'ambito della comunità matematica inglese. Egli osserva che se due curve, definite dalle equazioni algebriche f(x,y)=0 e g(x,y)=0 hanno punti in comune, allora questi sono comuni anche alle ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] di esse. Interpretando queste equazioni come equazioni di curve piane si possono sfruttare, per ricerche di e b interi ordinari, risulta che, (1+√5)/2 è radice dell'equazione algebrica x2−x−1=0, la quale ha coefficiente direttore uguale a 1: malgrado ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] Tale distanza è data da:
dove D=ds−1 e A è l'algebra delle funzioni lisce. Si osservi che ds ha la dimensione di una lunghezza γ(z)=γ-(z)-1γ(z) z∈C
dove C⊂P1(ℂ) è un curva semplice liscia, C− la componente del complementare di C che contiene ∞∉C e ...
Leggi Tutto
curva1
curva1 s. f. [femm. sostantivato dell’agg. curvo]. – 1. a. Nel linguaggio com., ogni linea che non sia retta. b. In matematica, sinon. di linea, intendendosi quindi anche la retta come una particolare curva. Molte curve di tipo particolare...
omaloidico
omaloìdico (o omalòidico) agg. [comp. del gr. ὁμαλός «uguale, uniforme» e -oide, con suff. aggettivale] (pl. m. -ci). – In geometria algebrica, rete o., sistema lineare di infinite curve algebriche piane razionali di ordine n, i...