• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
55 risultati
Tutti i risultati [329]
Matematica [55]
Fisica [37]
Arti visive [30]
Geometria [21]
Temi generali [21]
Archeologia [22]
Diritto [20]
Storia della matematica [18]
Fisica matematica [15]
Analisi matematica [13]

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] λ) è 0. L'immagine F(λ) mediante (U−λI)k di E è allora un sottospazio chiuso di E, complementare di N(λ), e la restrizione di U−λI a F(λ) è una semplici possono esser privi di soluzioni: per esempio, il problema di trovare nel piano una curva ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La teoria della misura Maurice Sion La teoria della misura Con la nozione matematica di misura si vogliono analizzare concetti che si riferiscono [...] di integrale al fine di ottenere teoremi più semplici e più potenti. Solo negli ultimi anni come l'estremo superiore delle misure dei chiusi contenuti nell'insieme. Se la misura come 'area al di sotto della curva': una funzione f di n variabili ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Equazioni differenziali: problemi non lineari

Enciclopedia della Scienza e della Tecnica (2007)

Equazioni differenziali: problemi non lineari Jean Mawhin La modellizzazione di molti problemi fisici porta alla ricerca di soluzioni di equazioni differenziali di secondo ordine, ordinarie o alle derivate [...] grande. Il teorema di Ascoli-Arzelá implica che Ih− è chiuso, si ha dunque: per ogni h∼∈C∼, il problema [38 suo asse si curva se la pressione è − e λ+. Poiché tutti gli autovalori di [56] sono semplici, si ha, per la barra elastica, se ]λ−,λ ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE ALLE DERIVATE PARZIALI – TEOREMA DI ESISTENZA DEGLI ZERI – DIMOSTRAZIONE PER ASSURDO – TEOREMA DELLA DIVERGENZA
Mostra altri risultati Nascondi altri risultati su Equazioni differenziali: problemi non lineari (2)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo John McCleary La topologia algebrica all'inizio del XX secolo Le radici della topologia algebrica [...] una varietà. Questo spazio è semplicemente connesso e ogni cappio sulla varietà si può sollevare a esso. Ogni cappio omotopo a zero si solleva a un cappio chiuso nel rivestimento universale e curve equivalenti si sollevano a curve con lo stesso punto ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Teoria dei sistemi e controllo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Teoria dei sistemi e controllo Mark Aizerman Teoria dei sistemi e controllo La teoria del controllo si è formata, come campo di ricerca indipendente, [...] )y e chiusa da un feedback non lineare stazionario [5] y=f(x), o non stazionario [6] y=f(t,x). Sotto la semplice ipotesi y funzionale che raggiunge il massimo o minimo valore sulla curva estremale si usa l'integrale rispetto al tempo di funzioni ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

L'Ottocento: matematica. Equazioni differenziali ordinarie

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali ordinarie Jeremy Gray Equazioni differenziali ordinarie Variabili reali Durante il XVIII sec. i matematici avevano risolto un numero crescente di equazioni [...] soluzioni non erano disponibili 'in forma chiusa', ossia come polinomi nelle funzioni elementari, yn), trasformando così una semplice dimostrazione di esistenza in un prescritto all'estremo a, ma queste curve, in corrispondenza dell'altro estremo b, ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento Jeremy Gray Problemi di analisi complessa alla fine dell'Ottocento La teoria generale [...] di vista. Si pensi all'esempio, così comune e banale, del semplice trucco formale secondo cui una coppia di numeri reali x e y si f(z) all'interno di una curva chiusa coincide con l'integrale lungo la curva chiusa; e infine il principio del massimo: ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie Jean Mawhin Equazioni differenziali ordinarie Accanto a sostanziali progressi nella teoria delle equazioni [...] delle traiettorie (u(t), v(t)) delle [3]. Le più semplici sono i punti singolari, orbite delle soluzioni costanti, soluzioni del sistema: da una famiglia di orbite che sono dei cicli (curve di Jordan chiuse). Poincaré associa alla [3] e a ogni ciclo ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni Craig Fraser Mario Miranda Calcolo delle variazioni Tra il 1870 e il 1920 si assiste al consolidamento degli argomenti [...] di questi è il classico problema isoperimetrico: trovare una curva chiusa di dato perimetro e area massima, come pure problemi Per la codimensione uno, in ogni dimensione, la teoria più semplice ed efficace è quella dovuta a De Giorgi. Si tratta ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti Roger Cooke Brian Griffith La topologia degli insiemi di punti La topologia generale o topologia degli insiemi [...] curve, nel quale stabiliva che un insieme infinito, limitato ed equicontinuo di funzioni su un intervallo chiuso l'intervallo unitario I, il concetto di convergenza uniforme diviene molto più semplice da trattare in termini di una metrica su F(I) (la ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA
1 2 3 4 5 6
Vocabolario
passare
passare v. intr. e tr. [lat. *passare, der. di passus -us «passo»]. – I. intr. (aus. essere) 1. a. Andare da un punto a un altro attraversando uno spazio o percorrendolo nel senso della lunghezza: p. per la via, per una via; p. per la strada...
òcchio
occhio òcchio s. m. [lat. ŏcŭlus]. – 1. a. In anatomia, organo di senso, pari, caratteristico dei vertebrati, che ha la funzione di ricevere gli stimoli luminosi e di trasmetterli ai centri nervosi dando origine alle sensazioni visive; è costituito...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali