• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
13 risultati
Tutti i risultati [283]
Analisi matematica [13]
Medicina [36]
Matematica [32]
Arti visive [25]
Anatomia [16]
Biografie [13]
Patologia [12]
Fisica [12]
Zoologia [12]
Temi generali [8]

convessità

Enciclopedia on line

convessità Una figura (piana o solida) è detta convessa se, dati due suoi punti qualunque, il segmento che li congiunge appartiene interamente alla figura. Più in generale questa definizione si applica [...] lato; c) la regione piana delimitata da una curva chiusa (o da un arco aperto e dalla corda che ne congiunge gli estremi) è convessa se essa giace tutta da una banda rispetto alla tangente in un qualsiasi punto del contorno (fig. 2); d) un poliedro è ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – GEOMETRIA – TEMI GENERALI
TAGS: SPAZIO VETTORIALE – FUNZIONI CONVESSE – CURVA CHIUSA – MATEMATICA – POLIEDRO
Mostra altri risultati Nascondi altri risultati su convessità (1)
Mostra Tutti

convessita generalizzata

Enciclopedia della Scienza e della Tecnica (2008)

convessità generalizzata Angelo Guerraggio Termine che designa gli studi tesi a estendere le proprietà delle funzioni convesse (o concave) – almeno quelle ritenute essenziali in un determinato contesto [...] di livello inferiore Cκ={x∈C tale che f(x)≤k} per ogni k∈ℝ. In modo del tutto equivalente, f (sempre definita su un insieme convesso C) è quasi-convessa quando per ogni x,y∈C e per ogni t∈[0,1] è soddisfatta la relazione f[tx+(1−t)y]≤ max[f(x),f(y ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

spazio di Banach

Enciclopedia della Scienza e della Tecnica (2008)

spazio di Banach Arrigo Cellina Uno spazio normato X diventa metrico definendo la distanza tra due punti x e y, indicata con d(x,y), come d(x,y)=∥x−y∥. Se questo spazio metrico è ‘completo’, è cioè [...] tale che ogni successione di Cauchy converge, X viene detto spazio di Banach. I n umeri reali hanno questa proprietà di essere completi e gli spazi di Banach sono le naturali generalizzazioni dell’insieme dei numeri reali. → Convessità ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: SPAZIO NORMATO – SPAZIO METRICO – NUMERI REALI
Mostra altri risultati Nascondi altri risultati su spazio di Banach (1)
Mostra Tutti

spazio normato

Enciclopedia della Scienza e della Tecnica (2008)

spazio normato Arrigo Cellina Uno spazio lineare X su cui sia definita una funzione a valori reali, ∥∙∥, detta norma, con le seguenti proprietà: (a) ∥x∥≥0 e ∥x∥=0 se e solo se x=0; (b) per ogni reale [...] (c) viene detta disuguaglianza triangolare. Si noti che la proprietà (b) implica la simmetria della norma, cioè che ∥x∥=∥−x∥. La norma su uno spazio lineare ha le stesse proprietà del valore assoluto di un numero sui numeri reali. → Convessità ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: SPAZIO LINEARE – NUMERI REALI – SE E SOLO SE – FUNZIONE
Mostra altri risultati Nascondi altri risultati su spazio normato (1)
Mostra Tutti

Variazioni, calcolo delle

Enciclopedia del Novecento II Supplemento (1998)

Variazioni, calcolo delle Giuseppe Buttazzo Gianni Dal Maso e Ennio De Giorgi SOMMARIO: 1. Introduzione.  2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] un funzionale del tipo dove u varia in W1,p (Ω; Rm) e f (x, y, η) è una funzione continua rispetto a (y, η) e quasi convessa rispetto a η. Supponiamo inoltre che esistano un esponente p > 1 e tre costanti c0 > 0, c1 > 0, c2 > 0 tali che ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ALLE DERIVATE PARZIALI – METODO DEI MOLTIPLICATORI DI LAGRANGE – CONDIZIONI AL CONTORNO DI NEUMANN – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE DI EULERO-LAGRANGE
Mostra altri risultati Nascondi altri risultati su Variazioni, calcolo delle (4)
Mostra Tutti

spazio di Hilbert

Enciclopedia della Scienza e della Tecnica (2008)

spazio di Hilbert Arrigo Cellina Per poter enunciare il teorema di Pitagora nel piano, occorre definire quando due vettori sono tra loro ortogonali; ciò si ottiene dalla nozione di prodotto scalare [...] ,a〉; (c) 〈a,a〉≥0 e 〈a,a〉=0 se e solo se a=0. Lo spazio si intende normato dalla norma ∥a∥=√〈a, a〉. Per es., lo spazio L2(Ω) delle classi di equivalenza delle funzioni a quadrato sommabile è uno spazio di Hilbert con il prodotto scalare → Convessità ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONI A QUADRATO SOMMABILE – CLASSI DI EQUIVALENZA – TEOREMA DI PITAGORA – PRODOTTO SCALARE – SPAZIO DI BANACH
Mostra altri risultati Nascondi altri risultati su spazio di Hilbert (1)
Mostra Tutti

La grande scienza. Calcolo delle variazioni

Storia della Scienza (2003)

La grande scienza. Calcolo delle variazioni Gianni Dal Maso Calcolo delle variazioni Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] massimo nell'intervallo [a,b] dello scarto ∣un(x)−u(x)∣ tende a zero per n tendente all'infinito. Supponiamo che f(x,y,η) sia continua, convessa rispetto a η, ed esistano un esponente p>1 e due costanti c0>0 e c1>0 tali che [9]  f (x,y,η)≥c0 ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

spazio di Sobolev

Enciclopedia della Scienza e della Tecnica (2008)

spazio di Sobolev Arrigo Cellina Per trattare problemi di equazioni differenziali ci si pone in spazi di funzioni che devono ammettere derivate in un qualche senso, anche debole, e devono essere completi [...] , a supporto compattamente contenuto in Ω), si ha Se questo avviene per tutte le variabili xi si dice che la funzione vettoriale g1, ..., gN è il gradiente (in senso debole) della funzione f e che f sta nello spazio di Sobolev W1,1(Ω). → Convessità ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI – FUNZIONE VETTORIALE – DERIVATA PARZIALE – FUNZIONE TEST – GRADIENTE
Mostra altri risultati Nascondi altri risultati su spazio di Sobolev (1)
Mostra Tutti

coniugata di Fenchel

Enciclopedia della Scienza e della Tecnica (2008)

coniugata di Fenchel Arrigo Cellina Sia f una funzione convessa definita su uno spazio di Hilbert X; si chiama polare di f, o trasformata o coniugata di Fenchel, o di Legendre, la funzione f * definita [...] precedente è affine (nella variabile z), si ha che f *, supremo di una famiglia di funzioni affini, è una funzione convessa. Si noti che l’operazione di prendere l’estremo superiore può dare come risultato +∞, così che f * sarà, generalmente, a ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONE CONVESSA – SPAZIO DI HILBERT – FUNZIONI AFFINI

teorema di Mazur

Enciclopedia della Scienza e della Tecnica (2008)

teorema di Mazur Arrigo Cellina Proposizione secondo la quale uno spazio normato, un insieme che sia convesso e chiuso è anche chiuso rispetto alla topologia debole. Nella topologia debole si hanno [...] metrica che deriva dalla norma, non è necessariamente chiuso nella topologia debole. Questo fatto però non si verifica se l’insieme è convesso. Sia X uno spazio normato e xn in X. Diciamo che una successione (xn) converge debolmente a x* se per ogni ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
1 2
Vocabolario
convessità
convessita convessità s. f. [dal lat. convexĭtas -atis]. – L’essere convesso: c. di una superficie; per una curva o superficie, equivale a concavità negativa (v. concavità); con sign. concr., la parte convessa di qualcosa: una mezzaluna con...
convèsso
convesso convèsso agg. [dal lat. convexus «ricurvo», der. di convehĕre «raccogliere insieme, condurre», comp. di con- e vehĕre «trasportare»]. – In genere, di corpo che si presenta ricurvo come la parte esterna di un cerchio o di una sfera...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali