• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
lingua italiana
7 risultati
Tutti i risultati [39]
Analisi matematica [6]
Matematica [15]
Storia della matematica [8]
Fisica [5]
Storia della fisica [4]
Fisica matematica [3]
Geometria [3]
Biografie [3]
Meccanica [2]
Meccanica dei fluidi [2]

lipschitziano

Dizionario delle Scienze Fisiche (1996)

lipschitziano lipschitziano 〈lìpsŠiziano〉 [agg. Der. del cognome di R.O.S. Lipschitz] [ANM] Funzione l.: lo è una funzione reale f(P) in un insieme S di punti quando esista una costante reale positiva [...] L tale che (condizione di Lipschitz) sia |f(P₁)-f(P₂)|≤L|P₁-P₂|, per ogni coppia P₁, P₂ di punti in S; tale funzione è assolut. continua (e perciò uniformemente continua) nell'insieme S. La nozione di funzione l. interviene nella teoria delle ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ORDINARIE
Mostra altri risultati Nascondi altri risultati su lipschitziano (1)
Mostra Tutti

Lipschitz Rudolph Otto Sigismund

Dizionario delle Scienze Fisiche (1996)

Lipschitz Rudolph Otto Sigismund Lipschitz 〈lìpsŠiz〉 Rudolph Otto Sigismund [STF] (Königsberg 1832 - Bonn 1903) Prof. di di matematica nell'univ. di Bonn (1864); socio straniero dei Lincei (1887). ◆ [...] [ANM] Condizione di L.: quella cui deve soddisfare una funzione lipschitziana (→ lipschitziano). ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su Lipschitz Rudolph Otto Sigismund (3)
Mostra Tutti

L'Ottocento: matematica. Il rigore in analisi

Storia della Scienza (2003)

L'Ottocento: matematica. Il rigore in analisi Umberto Botta Il rigore in analisi L'eredità di Lagrange All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] osservava Cauchy, soddisfa la condizione di Lagrange, eppure non Lipschitz (1823-1903), avevano dimostrato che sotto ipotesi molto generali una funzione era rappresentabile in quel modo. Si erano tuttavia serviti di un procedimento di integrazione di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento Jeremy Gray Problemi di analisi complessa alla fine dell'Ottocento La teoria generale [...] 0, che verifica una semplice generalizzazione della condizione di periodicità: dove è una matrice a coefficienti Lipschitz (1832-1903). Gli autori della scuola di Weierstrass avevano a disposizione i vari cicli di lezioni del maestro come punto di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali ordinarie Jean Mawhin Equazioni differenziali ordinarie Accanto a sostanziali progressi nella teoria delle equazioni [...] Picard (1856-1941) dimostra il teorema di Cauchy-Lipschitz con il metodo delle approssimazioni successive (o f(t,x,z) soddisfa una condizione di crescita di tipo quadratico in z (condizione di Nagumo), l'esistenza di una soluzione x(t) della [19 ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Calcolo delle variazioni Craig Fraser Mario Miranda Calcolo delle variazioni Tra il 1870 e il 1920 si assiste al consolidamento degli argomenti [...] alla variazione seconda, dimostrando che, se la condizione di Jacobi era soddisfatta, allora si poteva ottenere dell'elettrostatica, è il concetto di funzione lipschitziana, introdotto da Rudolf Otto Sigismund Lipschitz (1832-1903): cioè una funzione ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Metodi del calcolo numerico

Storia della Scienza (2003)

L'Ottocento: matematica. Metodi del calcolo numerico Dominique Tournès Metodi del calcolo numerico Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] un 'problema di Cauchy', cioè in un'equazione differenziale ordinaria y′=f(x,y) e in una condizione iniziale y Lipschitz (1868), per stabilire, con i nuovi criteri di rigore del XIX sec., il teorema fondamentale di esistenza detto di 'Cauchy-Lipschitz ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali