• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
83 risultati
Tutti i risultati [170]
Matematica [83]
Algebra [48]
Fisica [25]
Fisica matematica [23]
Diritto [18]
Temi generali [15]
Geometria [14]
Analisi matematica [15]
Statistica e calcolo delle probabilita [10]
Ingegneria [9]

modulo

Enciclopedia on line

Architettura Misura convenzionale che stabilisce il rapporto fra le varie parti di un edificio e una unità base di misura. Nell’architettura dell’età classica greca e romana l’unità base della composizione [...] anello; quest’ultimo appare così come un anello di ‘operatori’ sul gruppo. Precisamente siano dati un m. M e un anello, anche non commutativo, A; si assegni ora una legge che a ogni coppia di elementi (m, a), appartenenti il primo a M e il secondo ad ... Leggi Tutto
CATEGORIA: ARCHITETTURA E URBANISTICA – CORPI CELESTI – BIOINGEGNERIA – GENETICA – ALGEBRA – ANALISI MATEMATICA – ELETTRONICA – MECCANICA APPLICATA
TAGS: SCIENZA DELLE COSTRUZIONI – PROPRIETÀ DISTRIBUTIVA – PROPRIETÀ ASSOCIATIVA – FUNZIONE CONTINUA – TEORIA DEI NUMERI
Mostra altri risultati Nascondi altri risultati su modulo (3)
Mostra Tutti

matriciale

Dizionario delle Scienze Fisiche (1996)

matriciale matriciale [agg. Der. di matrice] [ALG] Calcolo m.: s'occupa delle regole delle operazioni che possono essere eseguite su matrici, nonché delle proprietà di tali operazioni: (a) uguaglianza: [...] matrice M✄N, anche la matrice N✄M, ma esse sono in generale diverse, cioè il prodotto tra matrici non è commutativo; valgono però la proprietà associativa e distributiva ed esiste l'elemento neutro per la moltiplicazione, che è la matrice identità I ... Leggi Tutto
CATEGORIA: ALGEBRA

corpo

Dizionario delle Scienze Fisiche (1996)

corpo còrpo [Der. del lat. corpus "corpo, complesso, organismo"] [LSF] Termine con cui s'indica generic. qualsiasi porzione limitata di materia, che si precisa mediante le caratteristiche di estensione [...] che, se a€0, ciascuna delle equazioni ay=b e za=b ammetta una e una sola soluzione. Se il prodotto è commutativo il c. si dice campo. ◆ [ALG] C. archimedeo: v. oltre: C. ordinato. ◆ [MCC] C. continuo: insieme di punti materiali costituenti un'unica ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – OTTICA – TEMI GENERALI – ALGEBRA

vettoriale

Dizionario delle Scienze Fisiche (1996)

vettoriale vettoriale [agg. Der. di vettore "inerente a vettori"] [ANM] Analisi, o calcolo, v.: la parte della matematica che s'occupa degli algoritmi con i quali si opera sui vettori (a questi si applicano, [...] k₁(k₂v)=(k₁k₂)v; (k₁+k₂)v=k₁v+k₂v; k(v₁+v₂)=kv₁+kv₂. Se K non è un campo (commutativo) ma un corpo (non necessariamente commutativo) è possibile definire in modo analogo uno spazio v. destro e uno spazio v. sinistro. Ecco alcuni esempi di spazi v.: i ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA

corpo

Enciclopedia on line

Termine generico con cui si indica qualsiasi porzione limitata di materia oppure la struttura fisica dell’uomo e degli animali oppure un insieme di cose o persone che formino un tutto omogeneo. Anatomia Il [...] i multipli interi di essa, si arriva a constatare che l’intersezione di tutti i possibili sottocorpi di K è un c. commutativo, ossia un campo, che si chiama ‘campo fondamentale’ di K e può presentare solo due alternative: a) esso è isomorfo al campo ... Leggi Tutto
CATEGORIA: STORIA DELLA BIOLOGIA – BIOCHIMICA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA DEI SOLIDI – FISICA MATEMATICA – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – ALGEBRA – STORIA DELLA MATEMATICA – ANATOMIA – STORIA DELLA MEDICINA – STORIA E FILOSOFIA DEL DIRITTO – DOTTRINE TEORIE E CONCETTI – FILOSOFIA DELLA STORIA – METAFISICA – STORIA DEL PENSIERO FILOSOFICO – ISTITUZIONI E ORGANISMI RELIGIOSI – OPERATORI RELIGIOSI E ADDETTI AL CULTO – STORIA DELLE RELIGIONI – ANTROPOLOGIA CULTURALE – MILITARIA – TRASPORTI MARITTIMI E FLUVIALI – TRASPORTI NELLA STORIA
TAGS: RADIAZIONI ELETTROMAGNETICHE – FISICA DELLO STATO SOLIDO – APPARATO CARDIOVASCOLARE – PROBLEMA DEI TRE CORPI – ANTROPOLOGIA CULTURALE
Mostra altri risultati Nascondi altri risultati su corpo (3)
Mostra Tutti

complessi, numeri

Enciclopedia on line

Si chiama c. ogni numero della forma a + i b, essendo a e b due numeri reali relativi (positivi, negativi o anche nulli) e rappresentando il simbolo i (unità immaginaria o immaginario) la radice quadrata [...] di z. Le operazioni definite soddisfano le consuete proprietà formali; l’insieme dei numeri c. è perciò un corpo commutativo o campo di numeri. È anzi il corpo algebrico, algebricamente chiuso, che si ottiene ampliando il corpo dei numeri reali ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: PIANO DI ARGAND-GAUSS – ALGEBRICAMENTE CHIUSO – FORMULA DI EULERO – POLIGONO REGOLARE – PARTE IMMAGINARIA
Mostra altri risultati Nascondi altri risultati su complessi, numeri (2)
Mostra Tutti

Finito

Enciclopedia Italiana - VI Appendice (2000)

Finito Antonio Machì (XV, p. 399) Matematica del finito Diversi filoni della ricerca matematica che mostrano particolare vitalità si possono ricondurre all'interesse per i problemi del finito. L'analisi [...] finiti). È tuttora aperto il problema di trovare una dimostrazione geometrica del teorema secondo il quale un corpo finito è commutativo e quindi è un campo (teorema di Wedderburn). In un piano finito possono valere o meno il teorema di Desargues ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – INSIEME PARZIALMENTE ORDINATO – FONDAMENTI DELLA MATEMATICA – TEOREMA DEI QUATTRO COLORI – CARATTERISTICA DI EULERO

Fermat, ultimo teorema di

Enciclopedia del Novecento (2004)

Fermat, ultimo teorema di MMassimo Bertolini di Massimo Bertolini SOMMARIO: 1. Introduzione. ▭ 2. Storia: il lavoro di Kummer. ▭ 3. Estensioni abeliane di Q. ▭ 4. Estensioni esplicite di campi e funzioni [...] di Hecke. L'universalità di Runiv implica l'esistenza di un'applicazione Mediante l'uso di ingegnosi criteri di algebra commutativa, Wiles e Taylor dimostrano che π è un isomorfismo. Questo significa che tutte le deformazioni di ρE,p sono associate ... Leggi Tutto
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – RELAZIONE DI EQUIVALENZA – POLINOMIO IRRIDUCIBILE – ALEXANDER GROTHENDIECK – ADRIEN MARIE LEGENDRE
Mostra altri risultati Nascondi altri risultati su Fermat, ultimo teorema di (2)
Mostra Tutti

gruppo

Enciclopedia on line

Biologia G. sanguigni Strutture antigeniche presenti sulla superficie dei globuli rossi e riconosciute da anticorpi specifici (➔ gruppi sanguigni). G. tissutali Insieme di individui istocompatibili, tra [...] a, b (cioè ab=ba in scrittura moltiplicativa e a+b=b+a in quella additiva), il g. si dice abeliano o commutativo; in tal caso si adotta abitualmente la scrittura additiva. Esempi di g. sono: l’insieme dei numeri razionali non nulli, rispetto all ... Leggi Tutto
CATEGORIA: BIOCHIMICA – BIOINGEGNERIA – FISIOLOGIA GENERALE – ISTOLOGIA – CHIMICA INORGANICA – CHIMICA ORGANICA – ALGEBRA – ANALISI MATEMATICA – GEOMETRIA – FISIOLOGIA UMANA – ETOLOGIA – SISTEMATICA E ZOONIMI – ISTITUZIONI ENTI MINISTERI – AZIENDE IMPRESE SOCIETA INDUSTRIE – PSICOTERAPIA – ANTROPOLOGIA CULTURALE – SOCIOLOGIA – FORME E STRUMENTI DI GOVERNO – POLITOLOGIA – ELETTROTECNICA
TAGS: RADICI N-ESIME DELL’UNITÀ – CORRISPONDENZA BIUNIVOCA – GENERATORI DI UN GRUPPO – NUMERI INTERI RELATIVI – MECCANICA QUANTISTICA
Mostra altri risultati Nascondi altri risultati su gruppo (7)
Mostra Tutti

L'Ottocento: matematica. Le origini della teoria dei gruppi

Storia della Scienza (2003)

L'Ottocento: matematica. Le origini della teoria dei gruppi Jeremy Gray Le origini della teoria dei gruppi La teoria di Galois e la soluzione algebrica delle equazioni algebriche La teoria di Galois [...] da Jordan sono quelli di 'centralizzatore' di un elemento A in un gruppo G (definito come l'insieme degli elementi B che commutano con A, ovvero tali che AB=BA) e di 'normalizzatore' di un sottogruppo H (il più grande sottogruppo K di G tale ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 9
Vocabolario
commutativo
commutativo agg. [der. di commutare]. – 1. Che commuta o è relativo al commutare: giustizia c., che consiste nel rendere il corrispondente di quello che si riceve. In diritto, contratto c., quello in cui le prestazioni reciproche sono stabilite...
commutàbile
commutabile commutàbile agg. [dal lat. commutabĭlis]. – Che si può commutare, scambiare; ant., mutevole, soggetto a cambiamento.
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali