• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
atlante
il chiasmo
lingua italiana
104 risultati
Tutti i risultati [3918]
Biografie [984]
Storia [719]
Arti visive [321]
Diritto [290]
Temi generali [230]
Archeologia [232]
Religioni [212]
Geografia [148]
Letteratura [207]
Economia [195]

L'Età dei Lumi: matematica. Lo sviluppo della teoria della probabilità e della statistica

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Lo sviluppo della teoria della probabilita e della statistica Oscar Sheynin Lo sviluppo della teoria della probabilità e della statistica I primi sviluppi del calcolo delle [...] portavano a un teorema integrale del limite, dal momento che s doveva restare piccolo rispetto a n, né a un teorema locale. Intorno alla Moivre affermò che "vi sono scrittori, certo di una classe diversa da quella di Jakob Bernoulli, i quali insinuano ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] mentre del Programma di Klein ignora perfino l'esistenza. Del resto, per quasi vent'anni lo stesso Klein non sembra essersi . È la scoperta dell'antinomia di Russell della classe di tutte le classi che non appartengono a sé stesse, che discende dall ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] uniforme (le ipotesi nel lavoro di Green erano vaghe e restarono tali ancora per molti anni), il metodo della funzione di lavoro, assieme a quello di Neumann, estese la classe di regioni nelle quali è possibile fornire costruttivamente soluzioni al ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Algebra, geometria, indivisibili

Il Contributo italiano alla storia del Pensiero: Scienze (2013)

Algebra, geometria, indivisibili Enrico Giusti Primi progressi nell’algebra Dopo un periodo di gestazione lungo tre secoli, l’algebra è la prima disciplina in cui nel Cinquecento si registrano sostanziali [...] punto perché suppone certo metodo Vieteo a me ignoto, e del resto è difficilissimo di spiegatura come mi riescono per lo più gli introdurre, accanto alle figure geometriche, una nuova classe di grandezze che corrispondono, ma che non coincidono ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA
TAGS: EQUAZIONE DI SECONDO GRADO – PARALLELEPIPEDO RETTANGOLO – METODO DEGLI INDIVISIBILI – EQUAZIONE DI QUARTO GRADO – CORRISPONDENZA BIUNIVOCA
Mostra altri risultati Nascondi altri risultati su Algebra, geometria, indivisibili (2)
Mostra Tutti

Solitoni

Enciclopedia del Novecento (1989)

Solitoni Francesco Calogero SOMMARIO: 1. Introduzione: cenno storico.  2. Soluzione di equazioni lineari di evoluzione mediante la trasformata di Fourier.  3. L'equazione di Korteweg-de Vries.  4. La [...] collisioni ‛elastiche', come, per esempio, quelli corrispondenti alle soluzioni delle equazioni della classe (36), e in particolare dell'equazione KdV; si ritiene, del resto, che tutte le equazioni non lineari di evoluzione che danno luogo a tale ... Leggi Tutto
TAGS: INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS – EQUAZIONE ALLE DERIVATE PARZIALI – TEORIA QUANTISTICA DEI CAMPI – SPAZIO DELLE CONFIGURAZIONI – EQUAZIONE DI SCHRÒDINGER
Mostra altri risultati Nascondi altri risultati su Solitoni (4)
Mostra Tutti

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] Gli operatori autoaggiunti rappresentano del resto le osservabili nella formulazione modulare' di ϕ. Sia Aϕ il suo generatore (v. cap. 4, § d). La classe dei fattori W di tipo III si suddivide ulteriormente mediante lo ‛spettro di Connes' Γ(W) ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La grande scienza. Combinatoria

Storia della Scienza (2003)

La grande scienza. Combinatoria Peter J. Cameron Combinatoria Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] grafi che su tutto il resto della combinatoria, un grafo resta comunque una struttura combinatoria molto particolare G, e si vede così subito che ≤ è un ordine parziale nella classe dei tipi di isomorfismo dei grafi finiti. È chiaro che non vi sono ... Leggi Tutto
CATEGORIA: ALGEBRA

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] discriminante d=b2−4ac viene ripartito in h(−d) classi di forme equivalenti, in ciscuna delle quali le forme esiste un numero γ, 0≤γ⟨p−1, tale che gγ e n danno lo stesso resto nella divisione per p, cioè n≡gγ(mod p). Il numero γ si dice indice del ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

Nodi e fisica

Enciclopedia del Novecento II Supplemento (1998)

Nodi e fisica Louis H. Kauffman Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] (2) appare una curva semplice e chiusa che non incontra il resto del diagramma: l'effetto di una tale curva ai fini del calcolo ritenere che nel modello proposto esista un'ampia classe di invarianti topologici di varietà tridimensionali e, associati ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMETRIA
TAGS: TEORIA QUANTISTICA DEI CAMPI – FILOSOFIA DELLA MATEMATICA – EQUAZIONE DI SCHRÖDINGER – CALCOLO DELLE VARIAZIONI – RELAZIONE DI EQUIVALENZA

L'Ottocento: matematica. Meccanica analitica

Storia della Scienza (2003)

L'Ottocento: matematica. Meccanica analitica Helmut Pulte Meccanica analitica La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] la dinamica. Da questo punto di vista la Méchanique analitique resta un'opera 'sintetica', nel senso che tale aggettivo aveva così individuato (a fronte di quelli non realizzati, in una classe di moti affini da precisare di volta in volta) dal fatto ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – MATEMATICA APPLICATA – STATISTICA E CALCOLO DELLE PROBABILITA – METAFISICA – STORIA DEL PENSIERO FILOSOFICO
1 2 3 4 5 6 7 8 ... 11
Vocabolario
primo
primo agg. [lat. prīmus, superl. dell’avv. e prep. ant. pri «davanti», da cui anche il compar. prior]. – 1. Numerale ordinale (indicato con 1° se si utilizzano cifre arabiche, oppure con il numero romano I) che, con il suo normale uso di agg.,...
secóndo¹
secondo1 secóndo1 agg. e s. m. [lat. secŭndus, der. di sequi «seguire»; propr. «che segue, che non offre resistenza», detto dapprima della corrente e del vento, quindi, per contrapp. ad adversus, «favorevole, conforme»; con diverso sviluppo...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali