La seconda rivoluzione scientifica: matematica e logica. La teoria degli insiemi
Gabriele Lolli
La teoria degli insiemi
La teoria degli insiemi è universalmente considerata, nella sua concezione e impostazione [...] La seconda classe di ordinali è la classe dei buoni ordini degli insiemi numerabili (la prima è quella degli insiemi finiti); la cardinalità di questa classe è più che numerabile, anzi la prima non numerabile, e si indica con il simbolo ℵ1 (aleph uno ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica
Solomon Feferman
Le scuole di filosofia della matematica
I più importanti programmi di fondazione della [...] in cui ciascun sottoinsieme non vuoto ha un primo elemento. Cantor dimostrò anche che per ciascun insieme A c'è un insieme B la cui cardinalità è maggiore di quella di A, cioè card(A)⟨card(B), ed esso è l'insieme di tutti i sottoinsiemi X di A, {X∣X ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1941-1950
1941-1950
1941
Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] informazioni si possono ottenere sull'insieme 'crivellato' N0={n∈N : [n]p∉ωp per ogni p∈P}? Nel caso in cui la cardinalità di ωp cresca con p ('grande crivello'), il metodo di Linnik conduce a stime sulla grandezza di N0. Verrà ripreso e ampliato ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1981-1990
1981-1990
1981
Il sistema operativo MS-DOS. Tale sistema, realizzato dalla Microsoft e destinato a dominare nel suo settore, è utilizzato per la prima [...] of non-isomorphic models. In questo libro egli affronta il problema di stabilire quanti possano essere i modelli di data cardinalità di una data teoria completa numerabile. L'idea principale è di compiere una vasta generalizzazione del concetto di ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] alla nozione generale di intervallo, mentre l'introduzione dell'equipotenza di insiemi porta alla definizione e alle proprietà dei cardinali. Si dice che il cardinale a è finito o intero se a≠a+1. Si presentano i calcoli sugli interi naturali. Si ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] M di oggetti distinti e ben definiti della nostra intuizione e del nostro pensiero" e la sua potenza (o numero cardinale) è "quel concetto generale che, per mezzo della nostra attiva facoltà di pensare, si deduce dall'insieme M, facendo astrazione ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I problemi di Hilbert e la matematica del nuovo secolo
David E. Rowe
I problemi di Hilbert e la matematica del nuovo secolo
Problemi matematici [...] matematici di primo piano, compreso Poincaré, avevano espresso forti riserve sulla teoria cantoriana dei numeri transfiniti, cardinali e ordinali.
L'influente matematico berlinese Leopold Kronecker (1823-1891) arrivò a rifiutare ogni concezione dei ...
Leggi Tutto
cardinalato
s. m. [der. di cardinale2]. – Dignità e ufficio di cardinale, e anche il tempo che dura quest’ufficio: promuovere, elevare, innalzare al cardinalato.
cardinale1
cardinale1 agg. [dal lat. cardinalis, der. di cardo -dĭnis «cardine»]. – 1. Che fa da cardine, principale: una verità c.; le idee c. di una teoria; i principî c. di un sistema; fissare i punti c. di una questione; in partic., le...