• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
il chiasmo
63 risultati
Tutti i risultati [63]
Matematica [25]
Algebra [7]
Storia della matematica [6]
Analisi matematica [6]
Fisica [4]
Statistica e calcolo delle probabilita [3]
Temi generali [3]
Filosofia [3]
Fisica matematica [3]
Chimica [2]

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] e le proprietà fondamentali dell'analisi combinatoria. Seguono considerazioni precise sugli insiemi infiniti, gli insiemi numerabili e calcoli con cardinali infiniti; infine si studiano i limiti proiettivi e induttivi. Il quarto capitolo presenta la ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

NUMERI

XXI Secolo (2010)

Numeri Umberto Zannier Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] che siano in corrispondenza biunivoca, definisce la nozione di cardinalità di un insieme; si può concepire, quindi, un numero naturale come una cardinalità, e si parla allora di numero cardinale. Da tutto ciò vediamo che questo concetto basilare di ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] puntuale, ma il viceversa è falso se l'insieme X ha cardinalità infinita. Lo spazio di Banach ℬ(X) è separabile se e e se per ogni x∈X esistono un intorno V di x in X e un numero M>0 tali che per tutte le funzioni f ∈H risulti ∥Df(y)∥≤M per ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

Computazione, teoria della

Enciclopedia della Scienza e della Tecnica (2007)

Computazione, teoria della Fabrizio Luccio La necessità del calcolo, pur riconosciuta dall'uomo in tutte le epoche storiche, ha condotto solo in tempi relativamente recenti a una sistemazione teorica [...] compongono e infine assegnare loro una numerazione progressiva: poichè si può banalmente dimostrare che i programmi ben formati sono infiniti, la classe dei programmi, e quindi degli algoritmi, ha la cardinalità degli interi. Un argomento simile al ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: CALCOLO DEI PREDICATI DEL PRIMO ORDINE – LINGUAGGI DI PROGRAMMAZIONE – RICORSIVAMENTE ENUMERABILE – CORRISPONDENZA BIUNIVOCA – TEOREMA DI INCOMPLETEZZA

La seconda rivoluzione scientifica: matematica e logica. La statistica metodologica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La statistica metodologica Domenico Costantini La statistica metodologica La statistica metodologica è la disciplina che, sulla scorta della [...] ,2,…,d) attributo, ci si chiede se le frequenze relative di tutte le possibili osservazioni, la cui cardinalità supponiamo numerabile, e di cui quelle compiute sono un sottoinsieme proprio, sono distribuite secondo la distribuzione di probabilità {p1 ... Leggi Tutto
CATEGORIA: STATISTICA E CALCOLO DELLE PROBABILITA

paradosso

Enciclopedia della Matematica (2013)

paradosso paradosso (dal greco pará, «oltre, contro», e dóxa, «opinione») termine applicato, nella sua accezione più ampia, a qualsiasi affermazione o ragionamento che contrasti con l’opinione comune [...] fondamentali della logica e della matematica: il concetto di classe o di insieme nell’antinomia di Russell; i concetti di numero cardinale e ordinale nelle antinomie di Cantor e Burali-Forti; i concetti di verità e falsità in quello di Jourdain e in ... Leggi Tutto
TAGS: PRINCIPIO DEL TERZO ESCLUSO – PARADOSSO DI BANACH-TARSKI – PARADOSSO DI BURALI-FORTI – CORRISPONDENZA BIUNIVOCA – AGGETTIVO DETERMINATIVO

Hilbert, problemi di

Enciclopedia della Matematica (2017)

Hilbert, problemi di Hilbert, problemi di lista di problemi (23 in tutto), all’epoca irrisolti, esposti in parte da D. Hilbert nel 1900, in occasione del secondo Congresso internazionale dei matematici [...] degli originali titoli di Hilbert. Primo problema: problema di Cantor sul numero cardinale del continuo Tra la cardinalità del numerabile e quella del continuo esistono cardinalità intermedie? G. Cantor aveva congetturato che non ve ne fossero ... Leggi Tutto
TAGS: SISTEMA DI ASSIOMI DI → ZERMELO-FRAENKEL – TEOREMA DI INCOMPLETEZZA DI GÖDEL – EQUAZIONE DIFFERENZIALE LINEARE – EQUAZIONE DI EULERO-LAGRANGE – TEOREMA DI → KRONECKER-WEBER

R

Enciclopedia della Matematica (2013)

R R (insieme dei numeri reali) insieme numerico, denotato con il simbolo R, che comprende tutti i numeri che è possibile scrivere in forma decimale, con parte decimale finita, infinita periodica o infinita [...] ambedue densi nell’insieme dei numeri reali, i numeri trascendenti sono “molti di più” dei numeri algebrici: l’insieme dei numeri algebrici possiede infatti la cardinalità del numerabile (vale a dire quella dei numeri naturali) e perciò l’insieme ... Leggi Tutto
TAGS: CARDINALITÀ DEL NUMERABILE – LIMITE DI UNA SUCCESSIONE – CARDINALITÀ DEL CONTINUO – CORRISPONDENZA BIUNIVOCA – ASSIOMA DI → ARCHIMEDE

infinito

Enciclopedia della Matematica (2013)

infinito infinito astrazione matematica (espressa dal simbolo ∞) che indica una grandezza illimitatamente grande o che può essere fatta crescere in modo illimitato. L’esempio più elementare è costituito [...] accettato con la nascita della teoria degli insiemi, dovuta a G. Cantor, e in particolare con la sua teoria dei numeri cardinali. In teoria degli insiemi, secondo la definizione data da R. Dedekind, è detto infinito un insieme che può essere posto ... Leggi Tutto
TAGS: FONDAMENTI DELLA MATEMATICA – CARDINALITÀ DEL NUMERABILE – CORRISPONDENZA BIUNIVOCA – EQUIVALENZA ASINTOTICA – PUNTO DI ACCUMULAZIONE
Mostra altri risultati Nascondi altri risultati su infinito (2)
Mostra Tutti

funzione calcolabile

Enciclopedia della Matematica (2017)

funzione calcolabile funzione calcolabile funzione per la quale esiste una procedura di calcolo (→ algoritmo) che permette di determinarne, in un numero finito di passi, il valore in corrispondenza di [...] sono calcolabili. Inoltre, mentre le funzioni calcolabili costituiscono una infinità numerabile, l’insieme delle funzioni aritmetiche non calcolabili ha cardinalità superiore al numerabile (→ funzione caratteristica). Si può quindi affermare che gli ... Leggi Tutto
TAGS: INSIEME DEI NUMERI NATURALI – PRINCIPIO DEL TERZO ESCLUSO – INSIEME DI DEFINIZIONE – MACCHINA DI → TURING – FUNZIONE ARITMETICA
1 2 3 4 5 6 7
Vocabolario
numeràbile
numerabile numeràbile agg. e s. m. [dal lat. numerabĭlis]. – Che può essere numerato, cioè distinto con numeri, oppure calcolato esattamente: ci darà la quantità esatta delle ore e minuti ..., se la frequenza fusse da noi n. (Galilei). In...
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali