• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
il chiasmo
63 risultati
Tutti i risultati [63]
Matematica [25]
Algebra [7]
Storia della matematica [6]
Analisi matematica [6]
Fisica [4]
Statistica e calcolo delle probabilita [3]
Temi generali [3]
Filosofia [3]
Fisica matematica [3]
Chimica [2]

numero

Enciclopedia on line

Ciascuno degli enti astratti che costituiscono una successione ordinata e che, fatti corrispondere ciascuno a ciascun oggetto preso in considerazione, servono a indicare la quantità degli oggetti costituenti [...] le operazioni e relazioni di cui sopra, contiene un sottoinsieme isomorfo a Q e che la sua cardinalità è maggiore di quella di N; R è cioè «più che numerabile». La costruzione dei n. complessi a partire dai n. reali si può effettuare, invece, senza ... Leggi Tutto
CATEGORIA: CRITICA RETORICA E STILISTICA – FILOSOFIA DEL LINGUAGGIO – GRAMMATICA – ALGEBRA – ARITMETICA – CONTABILITA – DOTTRINE TEORIE E CONCETTI – DOTTRINE TEORIE CONCETTI
TAGS: FUNZIONI DI VARIABILE COMPLESSA – SISTEMI DI EQUAZIONI, LINEARI – FUNZIONI DI VARIABILE REALE – RELAZIONE DI EQUIVALENZA – FUNZIONE ZETA DI RIEMANN
Mostra altri risultati Nascondi altri risultati su numero (6)
Mostra Tutti

LOGICA MATEMATICA

Enciclopedia Italiana - IV Appendice (1979)

LOGICA MATEMATICA Aldo Marruccelli Alberto Pasquinelli (XXI, p. 398; App. II, 11, p. 226; III, 1, p. 999). Princìpi di logica matematica. È opportuno premettere all'articolo che dà notizia dei progressi [...] della logica. Anzi la struttura di un universo non dipende neppure dalla natura degli elementi di α, ma soltanto dal loro numero, cioè dalla "cardinalità" di α: due insiemi equipotenti α e α′ danno origine a due universi U(α) e U(α′) strutturalmente ... Leggi Tutto
TAGS: TEORIA DELLA DIMOSTRAZIONE – TEORIA DELLE CATEGORIE – TEORIA DEGLI INSIEMI – SISTEMA ASSIOMATICO – TEORIA DEI MODELLI
Mostra altri risultati Nascondi altri risultati su LOGICA MATEMATICA (9)
Mostra Tutti

SKOLEM, Thoralf

Enciclopedia Italiana - V Appendice (1994)

SKOLEM, Thoralf Carlo Cattani Logico matematico norvegese, nato a Sandsvaer, nella provincia di Buskerud, il 23 maggio 1887, morto a Oslo il 23 marzo 1963. Le modeste condizioni dei genitori (il padre [...] degli insiemi di Zermelo-Fraenkel si basa su un sistema di assiomi con cardinalità finita ed è soddisfacibile in un dominio, allora è soddisfacibile in un dominio numerabile; ma ciò contrasta con l'esistenza di insiemi con potenze transfinite di ... Leggi Tutto
TAGS: TEORIA DEGLI INSIEMI – CHRISTIAN MICHELSEN – TEORIA DEI MODELLI – TEORIA DEI NUMERI – LUCE ZODIACALE
Mostra altri risultati Nascondi altri risultati su SKOLEM, Thoralf (4)
Mostra Tutti

TOPOLOGIA

Enciclopedia Italiana - IV Appendice (1981)

TOPOLOGIA (v. analysis situs, I, p. 87; topologia astratta, App. II, 11, p. 1004; topologia, App. III, 11, p. 960) Santuzza Baldassarri Ghezzo La t. oggi è una delle discipline fondamentali della matematica; [...] relazione a problemi di analisi funzionale, e si rivelarono utili fra l'altro nel "problema della misurabilità dei numeri cardinali". E infine le importanti classi degli spazi (variamente) "paracompatti" (v. topologia in App. III loc. cit. e spazio ... Leggi Tutto
TAGS: RELAZIONE DI EQUIVALENZA – TEORIA DELLE CATEGORIE – VARIETÀ TOPOLOGICHE – RICOPRIMENTO APERTO – RELAZIONE D'ORDINE
Mostra altri risultati Nascondi altri risultati su TOPOLOGIA (6)
Mostra Tutti

insieme

Dizionario delle Scienze Fisiche (1996)

insieme insième [Der. del lat. insemel, forma corrotta di insimul, comp. di in- e simul "insieme"] [ALG] Secondo la definizione di G. Cantor, ogni raccolta (aggregato, famiglia) di enti distinti, detti [...] ) se A e B sono due i. qualsiasi, si dirà che A e B hanno la stessa potenza (o cardinalità, o anche lo stesso numero cardinale) se è possibile stabilire una corrispondenza biunivoca fra gli elementi dei due i., cioè se è possibile formulare una legge ... Leggi Tutto
CATEGORIA: ALGEBRA
Mostra altri risultati Nascondi altri risultati su insieme (5)
Mostra Tutti

Informatica

Enciclopedia del Novecento (1989)

Informatica Fabrizio Luccio Franco P. Preparata Carl-Erik Fröberg Piero Sguazzero Piero Dell'Orco e Tomaso Poggio Teoria della computazione  di Fabrizio Luccio SOMMARIO: 1. Origine e motivazioni. [...] li compongono e assegnare poi a essi una numerazione progressiva: poiché si può banalmente dimostrare che i programmi ben formati sono infiniti, la classe dei programmi, e quindi delle procedure, ha la cardinalità degli interi. Un argomento simile al ... Leggi Tutto
TAGS: CALCOLO DEI PREDICATI DEL PRIMO ORDINE – MASSACHUSETTS INSTITUTE OF TECHNOLOGY – TEOREMA DI INCOMPLETEZZA DI GÖDEL – PROBLEMA DEL COMMESSO VIAGGIATORE – METODO DEGLI ELEMENTI FINITI
Mostra altri risultati Nascondi altri risultati su Informatica (12)
Mostra Tutti

STORIA DELLA MATEMATICA

Enciclopedia della Matematica (2013)

STORIA DELLA MATEMATICA Luigi Borzacchini STORIA DELLA MATEMATICA Il tempo della scienza senza tempo La matematica è la più antica e la più immutabile delle discipline. Si può dire che la matematica [...] i greci, in realtà, irrazionali potevano essere i rapporti (relativi a grandezze incommensurabili), ma non i numeri. Per essi i numeri erano solo interi, cardinali e finiti, erano di fatto aggettivi (1, 2, 3, 4, 100, 1000, 10000 erano declinati in ... Leggi Tutto
TAGS: PHILOSOPHIAE NATURALIS PRINCIPIA MATHEMATICA – METODO DEI MOLTIPLICATORI DI LAGRANGE – ACCADEMIA DELLE SCIENZE DI BERLINO – TEOREMA FONDAMENTALE DELL’ALGEBRA – MEDITATIONES DE PRIMA PHILOSOPHIA

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] in un tutto M di oggetti distinti e ben definiti della nostra intuizione e del nostro pensiero" e la sua potenza (o numero cardinale) è "quel concetto generale che, per mezzo della nostra attiva facoltà di pensare, si deduce dall'insieme M, facendo ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] vettoriale possiede almeno una base (secondo il lemma di Zorn) la cui cardinalità è univocamente determinata e si dice ‛dimensione' dello spazio vettoriale. Se questa è un numero naturale n ∈ N, lo spazio vettoriale si dice ‛di dimensione finita'. Un ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica Solomon Feferman Le scuole di filosofia della matematica I più importanti programmi di fondazione della [...] card(X) potesse essere rappresentato in termini di oggetti o nozioni più basilari. Se si accetta l'associazione di un numero cardinale card(X) a ciascun insieme X in una qualche maniera che soddisfi la condizione sopra esposta per l'uguaglianza di ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO
1 2 3 4 5 6 7
Vocabolario
numeràbile
numerabile numeràbile agg. e s. m. [dal lat. numerabĭlis]. – Che può essere numerato, cioè distinto con numeri, oppure calcolato esattamente: ci darà la quantità esatta delle ore e minuti ..., se la frequenza fusse da noi n. (Galilei). In...
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali