• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
Le parole valgono
27 risultati
Tutti i risultati [353]
Analisi matematica [27]
Fisica [109]
Matematica [77]
Temi generali [55]
Fisica matematica [46]
Elettrologia [36]
Algebra [31]
Arti visive [31]
Meccanica quantistica [26]
Biografie [23]

operatore

Enciclopedia on line

Biologia In genetica, tratto di DNA che fa parte di un operone e condiziona la trascrizione dei geni strutturali immediatamente adiacenti (➔ operone). Filosofia In filosofia analitica, un’espressione [...] ϕ e ψ sono vettori di ℋ, (ϕ, Aψ) indica il prodotto scalare tra ϕ e il vettore Aψ, ottenuto dall’applicazione di A su ψ, z) una funzione complessa della variabile complessa z, olomorfa localmente in un campo G del piano di Gauss; dato ω ∈ Ω, con S(ω) ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – GENETICA – MESTIERI E PROFESSIONI – FISICA MATEMATICA – MECCANICA QUANTISTICA – ANALISI MATEMATICA – LOGICA MATEMATICA – FILOSOFIA DEL LINGUAGGIO – METAFISICA
TAGS: QUANTIFICATORE ESISTENZIALE – GEOMETRIA DIFFERENZIALE – MECCANICA QUANTISTICA – SISTEMI DIFFERENZIALI – ANELLO DEI POLINOMI
Mostra altri risultati Nascondi altri risultati su operatore (2)
Mostra Tutti

equazione

Dizionario delle Scienze Fisiche (1996)

equazione equazióne [Der. del lat. aequatio -onis "uguaglianza, uguagliamento", da aequare "uguagliare"] [LSF] Uguaglianza tra due espressioni (il primo e il secondo membro dell'e.) contenenti una o [...] differenziali lineari del secondo ordine: v. equazioni differenziali ordinarie nel campo reale: II 459 b. ◆ [ALG] E. di campo: l'e. che precisa la dipendenza della grandezza del campo (scalare, vettore, ecc.) dalle coordinate spaziali e dal tempo: v ... Leggi Tutto
CATEGORIA: TEMI GENERALI – ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA MATEMATICA – GEOFISICA – MECCANICA – METROLOGIA – STORIA DELLA FISICA – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su equazione (9)
Mostra Tutti

gradiente

Dizionario delle Scienze Fisiche (1996)

gradiente gradiènte [Der. del part. pres. gradiens -entis del lat. gradi "procedere"] [LSF] Oltre che nei signif. rigorosi dell'analisi vettoriale (per i quali v. oltre: G. di uno scalare), il termine [...] II 384 c. ◆ [FTC] [EMG] G. di scarica a tempi brevi: v. isolamenti ad alta tensione: III 328 a. ◆ [ANM] G. di un campo scalare: operatore differenziale che, applicato a un campo scalare s, dà, per il punto cui è applicato, la direzione nella quale lo ... Leggi Tutto
CATEGORIA: BIOFISICA – ELETTROLOGIA – FISICA MATEMATICA – FISICA TECNICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – METEOROLOGIA – METROLOGIA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su gradiente (4)
Mostra Tutti

teorema della divergenza

Enciclopedia della Scienza e della Tecnica (2008)

teorema della divergenza Luca Tomassini Una formula nel calcolo di integrali multipli di funzioni di più variabili che stabilisce un legame tra un integrale (di volume) su un dominio n-dimensionale [...] superfici regolari (n−1)-dimensionali orientate utilizzando il versore (vettore di lunghezza unitaria) normale n. Ricordiamo che il campo scalare definito dalla è detto divergenza di a(x). Notiamo che, indicando con il simbolo ∇=(∂/∂x1,...,∂/∂xn) l ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: INTEGRABILI SECONDO LEBESGUE – EQUAZIONI DIFFERENZIALI – INTEGRALI MULTIPLI – DERIVATE PARZIALI – CAMPO VETTORIALE
Mostra altri risultati Nascondi altri risultati su teorema della divergenza (1)
Mostra Tutti

circuitazione

Enciclopedia on line

Nell’analisi vettoriale, se v (P) è il vettore di un campo vettoriale e l è una linea assegnata nella regione sede del campo, P il suo generico punto, dl lo spostamento elementare di P, si chiama c. (o [...] circolazione) elementare di v il prodotto scalare v ∙ dl = v dl cos α e c. di v relativa alla l l’integrale di linea (v. fig.) assoluto, ma cambia di segno; se, in particolare, il campo è conservativo, la c. dà la differenza di potenziale relativa ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – ANALISI MATEMATICA
TAGS: DIFFERENZA DI POTENZIALE – FORMA DIFFERENZIALE – INTEGRALE DI LINEA – ANALISI VETTORIALE – TEOREMA DI STOKES
Mostra altri risultati Nascondi altri risultati su circuitazione (2)
Mostra Tutti

Variazioni, calcolo delle

Enciclopedia del Novecento II Supplemento (1998)

Variazioni, calcolo delle Giuseppe Buttazzo Gianni Dal Maso e Ennio De Giorgi SOMMARIO: 1. Introduzione.  2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] e una sola estremale della famiglia. Tale famiglia viene detta ‛campo di estremali'. In questa situazione, a ogni punto (x, a x. La coercitività si dimostra esattamente come nel caso scalare, e dunque, usando i metodi diretti del calcolo delle ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ALLE DERIVATE PARZIALI – METODO DEI MOLTIPLICATORI DI LAGRANGE – CONDIZIONI AL CONTORNO DI NEUMANN – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE DI EULERO-LAGRANGE
Mostra altri risultati Nascondi altri risultati su Variazioni, calcolo delle (4)
Mostra Tutti

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] spazi di Hilbert. Sia H uno spazio di Hilbert su C, con prodotto scalare (x, y) → (x∣y). Un operatore compatto A si dice ‛simmetrico' quando per ogni x, y nel campo di definizione D(A) vale sempre (Ax∣y) = (x∣Ay). Operatori simmetrici provengono ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] cA(x), dove x1 e x2 sono punti qualsiasi in X e c è uno scalare (i punti x sono a volte chiamati vettori). Lo spazio lineare può essere reale che, con i suoi studi, stava aprendo un nuovo campo della scienza, non vi è dubbio che Vito Volterra ( ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] ormai diventato abituale designare questo vasto campo della conoscenza col termine di analisi . Si ha (U*)*=U, ∥U*∥=∥U∥, (U+V)*=U*+V*, (λU)*=λ-U* per ogni scalare complesso λ, (UV)*=V*U*. Quando U è compatto, U* esiste sempre ed è anch'esso compatto. ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

onda

Dizionario delle Scienze Fisiche (1996)

onda ónda [Der. del lat. unda] [LSF] Fenomeno fisico per cui una perturbazione prodotta localmente in un mezzo si propaga a distanza, trasportando lontano energia e informazioni circa le sue caratteristiche [...] propagazione (per es., propagandosi in un plasma soggetto a un campo magnetico: v. magnetoionica, teoria: III 562 f). ◆ precedente, una per ciascuna componente armonica. ◆ [GFS] Equazione scalare e vettoriale delle o. sismiche: v. sismologia: V 246 ... Leggi Tutto
CATEGORIA: ACUSTICA – ASTROFISICA E FISICA SPAZIALE – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI PLASMI – FISICA DEI SOLIDI – FISICA MATEMATICA – GEOFISICA – MECCANICA – OTTICA – RELATIVITA E GRAVITAZIONE – TEMI GENERALI – TERMODINAMICA E TERMOLOGIA – ANALISI MATEMATICA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su onda (4)
Mostra Tutti
1 2 3
Vocabolario
scalare¹
scalare1 scalare1 agg. e s. m. [dal lat. scalaris, der. di scalae -arum «scala» (v. scala)]. – 1. agg., non com. Fatto o disposto a scala; più com. in senso fig., che cresce o decresce gradualmente, graduato in progressione. a. Detto delle...
campo
campo s. m. [lat. campus «campagna, pianura» poi «campo di esercitazioni, campo di battaglia»]. – Termine che ha assunto (per evoluzione dai sign. principali che già aveva nella lingua d’origine) notevole varietà di accezioni e di usi, rimanendo...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali