GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] proiettivo come sottoschema chiuso, e se ℱ è un fascio coerente su X, gli spazi di coomologia Hk(X, ℱ) sono spazi vettoriali di dimensione finita sul campo base, e quindi sono invarianti dello schema e del fascio. Ad esempio, H0 (X, ℱ) è lo spazio ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] Intorno al 1990, nell'ambito della teoria conforme dei campi e della teoria delle stringhe, si è scoperto di prima classe di Chern del fibrato F.
Caso notevole di fibrato vettoriale olomorfo è quello del fibrato tangente olomorfo TV. Se z1,…,zs sono ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] è superata nel libro edito nel 1981.
Il primo capitolo inizia illustrando l'idea generale di spazio vettoriale topologico su un campo valutato. La completezza conduce agli spazi di Banach. Si studiano i sottospazi, le parti equilibrate, le parti ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] , la dimensione dello spazio mP/(mP)2 è uguale a quella del campo dei resti A(C)/m, mentre se P è singolare è maggiore. Grothendieck. Grazie al suo lavoro lo spazio di tutti i fibrati vettoriali su uno spazio X, che egli denotò con K(X), diventa ...
Leggi Tutto
Variazioni, calcolo delle
Gianni Dal Maso
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze dipendenti da variabili di tipo numerico [...] isotropi come quelli di elettrostatica, di campi gravitazionali e di equilibrio di membrane funzionale integrale lo è anche F___. Per esempio, se F è definito da [11] con u vettoriale e f è continua rispetto a (y,η) e verifica la [9] e la [22] ...
Leggi Tutto
Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] +2 generano le relazioni.
Questi teoremi hanno un'interpretazione nella teoria delle rappresentazioni. Sia V uno spazio vettoriale di dimensione n sul campo complesso ℂ, allora l'algebra degli operatori su V⊗m che commutano con il gruppo lineare GL(n ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il calcolo geometrico
Paolo Freguglia
Gert Schubring
Il calcolo geometrico
Quando pubblicò il trattato Die lineale Ausdehnungslehre (La teoria [...] manifeste quando, a partire dalle teorie di Grassmann e di Hamilton si arrivò allo sviluppo del calcolo vettoriale vero e proprio. Mentre nel campo della matematica pura, al di fuori della geometria, entrambe le teorie a tutta prima non produssero ...
Leggi Tutto
campo
s. m. [lat. campus «campagna, pianura» poi «campo di esercitazioni, campo di battaglia»]. – Termine che ha assunto (per evoluzione dai sign. principali che già aveva nella lingua d’origine) notevole varietà di accezioni e di usi, rimanendo...
vettoriale
agg. [der. di vettore]. – 1. In matematica e in fisica, inerente a vettori: grandezza v., in contrapp. a scalare (o grandezza scalare), grandezza caratterizzata, oltre che da un valore numerico, anche da una direzione e da un verso,...