algebra
àlgebra [Lat. algebra, der. dell'arabo al-giabr propr. "restaurazione", e quindi "riduzione" (dapprima nel signif. medico-chirurgico, e poi in quello matematico), che compare la prima volta in [...] in un insieme: v. algebra. ◆ [ALG] A. al calcolatore: lo stesso che manipolazione algebrica (v.). ◆ [ALG] A. autoaggiunta: v. gruppi, rappresentazione dei: III 123 d. ◆ [ALG] [ELT] A. booleana: struttura algebrica costituita da un insieme di ...
Leggi Tutto
calcolo letterale complesso delle regole e delle procedure di calcolo che utilizzano lettere dell’alfabeto per rappresentare numeri generici e che permettono quindi di scrivere espressioni e formule che contengono numeri, lettere e simboli del linguaggio matematico. Poiché le lettere rappresentano numeri ... ...
Leggi Tutto
Settore della matematica in cui le relazioni aritmetiche sono generalizzate, sviluppate e risolte sulla base di regole determinate, mediante l’uso di simboli letterali che rappresentano numeri, quantità variabili o altre entità matematiche (per es., vettori o matrici). L’a. classica studia il complesso ... ...
Leggi Tutto
Uno dei rami fondamentali delle scienze matematiche: in senso lato l’a. studia le operazioni, definite in un insieme, che godono di proprietà analoghe a quelle delle ordinarie operazioni dell’aritmetica. Con significato specifico è sinonimo di sistema ipercomplesso.
La parola al-giabr è usata per la ... ...
Leggi Tutto
Irving Kaplansky
L'algebra ha un rapporto singolare con il resto della matematica. Nella prefazione al suo libro del 1956, Fundamental concepts of algebra, Claude Chevalley affermava che l'algebra non è solo una parte della matematica; essa svolge nell'ambito della matematica quel ruolo che la matematica ... ...
Leggi Tutto
Roberto Levi
Quando le lettere funzionano meglio dei numeri
Si può dire che l'algebra inizia dove finisce l'aritmetica, perché introduce, attraverso il calcolo letterale, un modo nuovo, molto più generale, di rappresentare i numeri e le operazioni che si possono eseguire su di essi. Ma il vero obiettivo ... ...
Leggi Tutto
(II, p. 421; App. II, I, p. 125; III, I, p. 61; IV, I, p. 83)
Negli ultimi dieci anni lo sviluppo dell'a. è stato molto vivace. Ai temi di ricerca già consolidati se ne sono aggiunti nuovi e ne sono stati riscoperti altri più antichi. In effetti lo sviluppo della scienza e della matematica in particolare ... ...
Leggi Tutto
Irving Kaplansky
sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. 9. Algebra lineare. 10. Anelli associativi. 11. Anelli di gruppo e rappresentazioni di gruppi. 12. Anelli ... ...
Leggi Tutto
Algebra moderna. - L'"algebra moderna", che meglio si potrebbe chiamare "algebra astratta" o "algebra generale", si è sviluppata soprattutto negli ultimi venticinque anni dal connubio dell'algebra classica con le vedute della moderna matematica assiomatica, sino a diventare uno degli indirizzi più caratteristici ... ...
Leggi Tutto
Introduzione Storica. -1. Il vocabolo algebra è una derivazione della parola araba al-giabr, che si trova per la prima volta nel libro Kitāb al-giabr wa 'l-muqābalah dell'astronomo e geografo Muhammad ibn Mūsà al-Khuwārizmī, fiorito a Baghdād nella prima metà del sec. IX, a significare l'operazione ... ...
Leggi Tutto
equazione
equazióne [Der. del lat. aequatio -onis "uguaglianza, uguagliamento", da aequare "uguagliare"] [LSF] Uguaglianza tra due espressioni (il primo e il secondo membro dell'e.) contenenti una o [...] coefficienti omogenei: v. equazioni differenziali ordinarie nel campo reale: II 450 a. ◆ [ANM] E. differenziale aggiunta e autoaggiunta: v. equazioni differenziali ordinarie nel campo reale: II 452 d. ◆ [ANM] E. differenziale ai differenziali esatti ...
Leggi Tutto