• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
24 risultati
Tutti i risultati [116]
Storia della matematica [24]
Matematica [47]
Filosofia [20]
Biografie [11]
Fisica [12]
Storia del pensiero filosofico [10]
Geometria [8]
Fisica matematica [8]
Temi generali [6]
Astronomia [6]

La Rivoluzione scientifica: i domini della conoscenza. Le innovazioni di Luca Valerio e di Bonaventura Cavalieri

Storia della Scienza (2002)

La Rivoluzione scientifica: i domini della conoscenza. Le innovazioni di Luca Valerio e di Bonaventura Cavalieri Pier Daniele Napolitani Le innovazioni di Luca Valerio e di Bonaventura Cavalieri L'eredità [...] classica sono sempre particolari, dati attraverso una procedura costruttiva più o meno assiomatizzata. Gli assiomi di Euclide permettono l'esistenza di rette e cerchi; una procedura implicita (tagliare un dato cono con un dato piano) permette ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] quella fondamento ultimo e giustificazione. Ciò è tanto più vero per la geometria, che Newton e Gauss addirittura annoveravano tra le scienze empiriche. Gli assiomi di Euclide hanno un fondamento nella realtà dello spazio fisico. Qual è il carattere ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

Scienza greco-romana. Archimede

Storia della Scienza (2001)

Scienza greco-romana. Archimede Reviel Netz Archimede Archimede è l’unico dei matematici greci di cui abbiamo notizie storiche; questa eccezionalità è dovuta in parte ai risultati da lui ottenuti, [...] un’argomentazione matematica, e i risultati della matematica dicono di più degli assiomi; infatti non è immediato che il teorema di Pitagora sia già contenuto negli assiomi di Euclide. In questo senso la matematica produce informazioni, perché porta ... Leggi Tutto
CATEGORIA: BIOGRAFIE – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica Solomon Feferman Le scuole di filosofia della matematica I più importanti programmi di fondazione della [...] sui fondamenti assiomatici della geometria. In quel progetto, Hilbert era ritornato agli assiomi di Euclide, dapprima per migliorarli al fine di adeguarli agli standard moderni di rigore, e poi per sollevare nuove questioni metateoriche quali la loro ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] sul problema dello spazio (1922) Weyl passa in rassegna i vari modi in cui esso era stato trattato in precedenza. Prima c'erano gli assiomi di Euclide e quelli di Hilbert, ora c'è la descrizione cartesiana (come la chiama lo stesso Weyl) che fa uso ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

Il Rinascimento. Le arti matematiche

Storia della Scienza (2001)

Il Rinascimento. Le arti matematiche Eberhard Knobloch Ivo Schneider Le arti matematiche Il concetto di scienze matematiche di Eberhard Knobloch Il Rinascimento riprese dal Medioevo il concetto delle [...] a corno, per il quale non vale né l'assioma di Archimede-Eudosso né il principio del valore intermedio. Peletier sostenne logicamente equivalente al primo. La decisione di Euclide di accogliere questa proposizione tra i postulati indimostrabili ... Leggi Tutto
CATEGORIA: COMPUTO DEL TEMPO – STORIA DELLA MATEMATICA

La civiltà islamica: antiche e nuove tradizioni in matematica. Gli archimedei e i problemi infinitesimali

Storia della Scienza (2002)

La civilta islamica: antiche e nuove tradizioni in matematica. Gli archimedei e i problemi infinitesimali Roshdi Rashed Gli archimedei e i problemi infinitesimali La storia della geometria infinitesimale, [...] (anche di figure curvilinee) per trasformazioni affini. A questo scopo utilizza l'assioma di Archimede della prop. 1 del Libro X degli Elementi di Euclide, di affermare che a partire da un certo numero di operazioni si ha: o, in un altro linguaggio ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La scienza bizantina e latina: la nascita di una scienza europea. Le discipline matematiche

Storia della Scienza (2001)

La scienza bizantina e latina: la nascita di una scienza europea. Le discipline matematiche Menso Folkerts Richard P. Lorch Anne Tihon Le discipline matematiche La matematica nell'Europa latina di [...] e, allo stesso modo, l'obiezione di Metochite sulla radice quadrata era fondata sui teoremi di Euclide. Ma il trattato di Barlaam, interamente redatto secondo uno spirito euclideo basato su teoremi e assiomi, resta comunque unico nel suo genere ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Scienza greco-romana. Euclide e la matematica del IV secolo

Storia della Scienza (2001)

Scienza greco-romana. Euclide e la matematica del IV secolo Reviel Netz Euclide e la matematica del IV secolo Sappiamo del IV sec. a.C. più di quanto non sappiamo del V, ma è sempre molto poco. Fra [...] e del III che ci sono pervenute, in particolare quelle di Euclide e di Archimede. Euclide visse intorno al 300 a.C., data non certo opera ha lo scopo di stabilire assiomi, pur non presentando sempre il grado di accuratezza espresso nelle definizioni. ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA
1 2 3
Vocabolario
geometrìa
geometria geometrìa s. f. [dal lat. geometrĭa, gr. γεωμετρία, comp. di γῆ «terra» (v. geo-) e -μετρία «misurazione» (v. -metria)]. – 1. In senso ampio e generico, lo studio dello spazio e delle figure spaziali, originariamente sviluppatosi...
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali