• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
3 risultati
Tutti i risultati [45]
Filosofia [3]
Matematica [12]
Storia della matematica [8]
Biografie [2]
Storia del pensiero filosofico [2]
Algebra [2]
Temi generali [1]
Analisi matematica [1]
Geometria [1]
Logica matematica [1]

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] mezzo di 'successioni fondamentali', ossia successioni di numeri razionali, che soddisfano la condizione di convergenza di Cauchy. L'insieme di quei numeri soddisfa un assioma di continuità, ed è a questo punto che le strade di Dedekind e di Cantor ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica Solomon Feferman Le scuole di filosofia della matematica I più importanti programmi di fondazione della [...] x′=F(x) per ogni x∈ℕ. Ciò che gli assiomi di Peano (o di Dedekind) non garantiscono è l'esistenza di qualche loro realizzazione (o 'modello'). Dedekind argomentò a sostegno di questa esistenza considerando l'infinità (potenziale) degli oggetti del ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

EPISTEMOLOGIA

Enciclopedia Italiana - IV Appendice (1978)

. Assumendo la parola "epistemologia" nel senso di "riflessione critica generale intorno alla conoscenza scientifica", il presente tentativo di sintesi problematica delle acquisizioni epistemologiche post-ottocentesche [...] l'esigenza tanto di definire i concetti primitivi di sistema di Peano mediante nozioni di logica pura e della moderna teoria degli insiemi, quanto di ricondurre deduttivamente tutti gli assiomi peaniani a un'esigua classe di principi logici e ... Leggi Tutto
TAGS: TRACTATUS LOGICO-PHILOSOPHICUS – PRINCIPIO D'INDETERMINAZIONE – METODO IPOTETICO-DEDUTTIVO – FILOSOFIA DELLA MATEMATICA – FILOSOFIA DELLA SCIENZA
Mostra altri risultati Nascondi altri risultati su EPISTEMOLOGIA (6)
Mostra Tutti
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali