• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
5 risultati
Tutti i risultati [51]
Storia della matematica [5]
Matematica [17]
Informatica [6]
Algebra [7]
Analisi matematica [5]
Arti visive [3]
Programmazione e programmi [3]
Musica [3]
Statistica e calcolo delle probabilita [2]
Biologia [2]

L'Ottocento: matematica. Le origini della teoria dei gruppi

Storia della Scienza (2003)

L'Ottocento: matematica. Le origini della teoria dei gruppi Jeremy Gray Le origini della teoria dei gruppi La teoria di Galois e la soluzione algebrica delle equazioni algebriche La teoria di Galois [...] formano esse stesse un gruppo. Questo gruppo si dice 'gruppo quoziente di G modulo N' e si indica con G/N. Un gruppo è risolubile se e . Egli adottava la terminologia di Gauss per l'aritmetica modulare: se un polinomio f è divisibile per un ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] D=b2−4pc. D è perciò un quadrato modulo p, cioè è un residuo quadratico modulo p. Euler aveva dimostrato che, mentre perun Dirichlet dedusse l'esistenza di infiniti numeri primi in ogni progressione aritmetica a+Km (con a e m primi fra loro). Per ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. La teoria dei numeri

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La teoria dei numeri Günther Frei La teoria dei numeri La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] interamente sulla teoria dei numeri pari e dispari (cioè delle congruenze modulo 4) sviluppata dalla scuola pitagorica. Nicomaco di Gerasa (100 d.C. ca.), nella sua Introduzione all'aritmetica, fornì i primi quattro esempi di numeri perfetti, e cioè ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri Günther Frei Teoria analitica dei numeri La teoria analitica dei numeri non è una teoria matematica ben definita, [...] complessi della funzione L (del carattere non principale modulo 4): si trovano sulla retta Re(s)=1/2, un caso particolare dell'ipotesi di Riemann. Funzioni L. Primi in progressione aritmetica Funzioni L di Dirichlet. Dirichlet generalizzò nel 1837 ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. I problemi di Hilbert e la matematica del nuovo secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. I problemi di Hilbert e la matematica del nuovo secolo David E. Rowe I problemi di Hilbert e la matematica del nuovo secolo Problemi matematici [...] dell'intuizione spaziale" e aggiunse che "i segni aritmetici sono figure scritte e le figure geometriche sono formule , f2(z)=J(z), dove J(z) è la funzione modulare. Hilbert formulò le seguenti generalizzazioni: siano k un'estensione algebrica finita ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA
Vocabolario
retìcolo
reticolo retìcolo s. m. [dal lat. reticŭlum o reticŭlus, dim. di rete «rete»]. – 1. a. Sinon. di rete e di reticolato, usato in alcune espressioni tecniche per indicare un disegno in forma di rete o una struttura che abbia aspetto di rete...
inserzióne
inserzione inserzióne s. f. [dal lat. tardo insertio -onis, der. di inserĕre «inserire», part. pass. insertus]. – 1. Atto, operazione, effetto di inserire, nei varî sign. del verbo: interfogliare un libro con i. di fogli bianchi; i. di un...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali