• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
12 risultati
Tutti i risultati [207]
Geometria [12]
Matematica [74]
Fisica [33]
Storia della matematica [22]
Analisi matematica [15]
Chimica [14]
Temi generali [16]
Biologia [15]
Informatica [14]
Ingegneria [11]

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti Roger Cooke Brian Griffith La topologia degli insiemi di punti La topologia generale o topologia degli insiemi [...] dato da Giuseppe Peano (1858-1932) con la costruzione di un'applicazione continua da una retta a tutti i punti di un quadrato. L' di punti di accumulazione: si è già visto come la linearità di F(x) non veniva alterata da un punto eccezionale ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

omotopia

Enciclopedia della Scienza e della Tecnica (2008)

omotopia Luca Tomassini Formalizzazione della nozione intuitiva di deformabilità di un’applicazione in un’altra. Più precisamente, due applicazioni f e g dello spazio topologico X nello spazio topologico [...] sottoinsieme convesso di ℝn e siano f,g:X→C due applicazioni continue qualunque. Per definizione di convessità, la linea retta che collega questo il gruppo di omotopia (n-dimensionale) πn dello spazio X. → Equazioni differenziali: problemi non lineari ... Leggi Tutto
CATEGORIA: GEOMETRIA
Mostra altri risultati Nascondi altri risultati su omotopia (4)
Mostra Tutti
1 2
Vocabolario
matrice
matrice s. f. [dal lat. matrix -icis «madre; utero»]. – 1. a. Sinon. non com. di madre, soltanto nell’espressione merid. chiesa m., o assol. matrice, lo stesso che chiesa madre (v. madre). b. Sinon. letter. di utero, di uso com. nel linguaggio...
resistènza
resistenza resistènza s. f. [dal lat. tardo resistentia, der. di resistere «resistere»; il sign. 3 è un calco del fr. résistance]. – 1. L’azione e il fatto di resistere, il modo e i mezzi stessi con cui si attuano. In usi generici, riferito...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali