GIORGI, Giovanni
Claudio Egidi
Nacque a Lucca il 27 nov. 1871 da Giorgio, eminente giurista, e da Elisabetta Pia Cupello.
In seguito ai trasferimenti della famiglia connessi alla professione paterna, [...] , completando in modo più generale il metodo di calcolo su basi che anticipano l'analisifunzionale moderna. Infine nella quarta memoria studiò la propagazione delle perturbazioni lungo le linee semi-infinite.
In una breve nota del 1940 (A proposito ...
Leggi Tutto
DE FINETTI, Bruno
Giorgio Israel
Nacque a Innsbruck (Austria) il 13 giugno 1906 da Gualtiero e da Elvira Menestrina. italiani di cittadinanza austriaca. Si iscrisse nel 1923 al Politecnico di Milano, [...] contributi nei campi della biomatematica e della geometria (cui si è già accennato), ma anche nei campi dell'analisi matematica, dell'analisifunzionale e della fisica matematica. Tuttavia, il campo in cui il D. ha lasciato contributi che gli sono ...
Leggi Tutto
limite
limite nozione centrale nell’analisi matematica a cui vengono ricondotte le definizioni delle altre nozioni fondamentali (→ derivata, → integrale, → serie ecc.). Esprime in termini rigorosi l’esigenza [...] «ε − δ» e ormai classica. Il concetto è stato poi generalizzato nel xx secolo agli spazi astratti, dando luogo all’analisifunzionale moderna.
Limite di una funzione
Alla base della nozione di limite sta quella di intorno. Si considerino due spazi ...
Leggi Tutto
AMALDI, Ugo
Nicola Virgopia
Nacque a Verona il 18 apr. 1875. A Pavia, dove il padre era presidente del tribunale, fu allievo del ginnasio annesso al liceo "Ugo Foscolo"
ed ebbe come professore L. Berzolari; [...] suo maestro S. Pincherle: vi si trovano già delineati molti dei moderni concetti riguardanti l'analisifunzionale e i più notevoli teoremi sulle trasformazioni funzionali lineari e su quella di Laplace. L'A. però, tra gli analisti italiani, fu senza ...
Leggi Tutto
ROTA, Giancarlo (Gian-Carlo)
Fabrizio Palombi
– Nacque a Vigevano il 27 aprile 1932, figlio primogenito dell’ingegnere Giovanni e di Luigia Facoetti.
Il padre fu un uomo coltissimo, amante della filosofia, [...] husserliana e heideggeriana.
Successivamente s’iscrisse all’Università di Yale, sede di una delle più importanti scuole di analisifunzionale dell’epoca, e nel 1956 conseguì il dottorato sotto la direzione di Jacob Schwartz (ibid., pp. 21-38 ...
Leggi Tutto
FANTAPPIÉ, Luigi
Giuseppe Arcidiacono
Nacque a Viterbo il 15 sett. 1901, da Liberto ed Agrippina Gnazza. Conseguì la laurea in matematica alla Scuola normale superiore di Pisa nel 1922 e fu assistente [...] . d. Circ. matem. di Palermo, LVII [1933], pp. 1-57). Secondo G. Fichera, "la teoria dei funzionali analitici costituisce un capitolo dell'analisifunzionale completo in sé e che possiede quei requisiti di armonicità e di intima coerenza che da soli ...
Leggi Tutto
Lebesgue, misura di
Lebesgue, misura di definizione di misura dovuta a H.-L. Lebesgue. La nozione di misura n-dimensionale (in particolare, per n = 1, 2, 3 rispettivamente, di lunghezza, area e volume) [...] a Lebesgue, che attorno al 1900 ne ha dato una definizione tale da soddisfare le necessità della nascente analisifunzionale.
Una definizione costruttiva si può ottenere nel seguente modo. Un plurintervallo n-dimensionale I (nel seguito, brevemente ...
Leggi Tutto
norma
norma applicazione ‖...‖: V → [0, +∞) definita su uno spazio vettoriale reale o complesso e caratterizzata dalle seguenti proprietà:
• ‖v‖ ≥ 0, ∀v ∈ V e ‖v‖ = 0 se e solo se v = 0;
• ‖k ⋅ v‖ = [...] , è cioè il valore più frequente in una distribuzione di dati.
Norma in analisifunzionale
Il concetto di norma è anche utilizzato in questa branca dell’analisi dove si studiano le proprietà degli spazi normati e completi nella metrica indotta dalla ...
Leggi Tutto
risolvente
risolvente in algebra, termine sinonimo di equazione risolvente, cioè equazione ausiliaria mediante la quale si rende più agevole la risoluzione di un’altra data equazione. Un primo esempio [...] Questa è un’equazione di grado n! nella variabile y che è la risolvente di Galois di ƒ(x) = 0.
☐ In analisifunzionale, il termine indica un operatore definito da (T − λI)−1, essendo T un operatore lineare limitato su uno spazio di Banach complesso ...
Leggi Tutto
teoria della misura
Luca Tomassini
Una misura è una funzione non negativa sui sottoinsiemi di uno spazio soddisfacente la proprietà di completa additività: la misura di un’unione numerabile di insiemi [...] per la teoria dell’integrazione. Insieme, esse hanno un ruolo fondamentale nella matematica contemporanea, particolarmente in analisi, analisifunzionale e teoria della probabilità. Alla base del concetto di misura troviamo quello di σ-algebra, una ...
Leggi Tutto
funzionale1
funzionale1 agg. [der. di funzione, sul modello del fr. fonctionnel]. – 1. a. Relativo a una funzione, inerente alle funzioni esercitate da una persona: competenza f.; privilegi f.; qualifiche f., le qualifiche che, nell’ordinamento...
sistema
sistèma s. m. [dal lat. tardo systema, gr. σύστημα, propr. «riunione, complesso» (da cui varî sign. estens.), der. di συνίστημι «porre insieme, riunire»] (pl. -i). – 1. Nell’ambito scientifico, qualsiasi oggetto di studio che, pur...