L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] Bertini, Pasquale Del Pezzo, Federigo Enriques e Francesco Severi furono tra i molti a fornire importanti contributi alla geometria algebrica a più dimensioni.
Enrico D'Ovidio fu tra i primi italiani a mettersi in evidenza, e già negli anni Settanta ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Geometria delle coniche, luoghi, contatti e costruzioni
Philippe Abgrall
Hélène Bellosta
Geometria delle coniche, luoghi, contatti e costruzioni
L'opera [...] questo secondo metodo in uno dei lemmi necessari ai fondamenti teorici della Maqāla fī 'l-ǧabr wa-'l-muqābala (Trattato sull'algebra). Vi si trova anche, come quarto metodo, quello utilizzato da al-Ḫāzin e da al-Harawī, espresso nei termini di quest ...
Leggi Tutto
Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] : v. equazioni, XIV, pp. 137-38). Vengono attribuite a queste funzioni n valori costanti (c₁,...,cn) e si risolvono le equazioni algebriche Ik (q,p)=ck rispetto ai momenti canonici. Con le funzioni pk=Jk (q,c) così ottenute si costruisce la forma ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] ).
Per una varietà complessa M con una metrica hermitiana, la forma di curvatura Ω=(Ωij) è antihermitiana, cioè essa assume i valori nell'algebra di Lie del gruppo unitario U(n). Come nella (61), poniamo
Allora ci(Ω) è una 2i-forma chiusa su M e la ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Geometria: la tradizione euclidea rivisitata
Pascal Crozet
Geometria: la tradizione euclidea rivisitata
Introduzione
Fin dai primi sviluppi [...] da una retta data e da quelle che risultano dalla divisione di un'altra retta data in un numero arbitrario di segmenti; algebricamente essa può essere interpretata così: a(b+c+d+…)=ab+ac+ad+… La prop. 4 tratta dei quadrati costruiti su una retta ...
Leggi Tutto
L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] di quelle idee e concetti fecondi per gli sviluppi del XIX sec., dei quali abbiamo detto. La potenza dei nuovi metodi algebrici e analitici portò i matematici, con rare eccezioni, a escludere ciò che non si conformava a questi nuovi metodi, a porre ...
Leggi Tutto
L’attività e l’operazione di rappresentare con figure, segni e simboli sensibili, o con processi vari, anche non materiali, oggetti o aspetti della realtà, fatti e valori astratti, e quanto viene così [...] r. irriducibili: la soluzione è possibile (teorema di H. Weyl) se G è un gruppo topologico compatto. Problema della r. In algebra, consiste nella ricerca di un gruppo, un anello, un campo ecc. che sia isomorfo (o anche solo omomorfo) a un assegnato ...
Leggi Tutto
Conformità o equivalenza tra più parti, termini, elementi.
Biologia
Concetto che esprime il rapporto fra organi o strutture morfologiche propri di categorie tassonomiche diverse (fig. 1), ma aventi la [...] della retta limite j è ax+by+c=0.
Topologia
La teoria dell’o. costituisce uno dei capitoli centrali della topologia algebrica. Essa si propone di esprimere proprietà geometriche e caratteri topologici di una varietà Vn di dimensione n attraverso n+1 ...
Leggi Tutto
Insieme di linee, reali o ideali, che si intrecciano formando incroci e nodi e dando luogo a una struttura complessa. Più in particolare, infrastruttura tecnica per la distribuzione di un segnale (tipicamente [...] di curve piane dotate di pun;ti base, come le coniche per tre punti. R. omaloidica Sistema lineare di ∞2 curve algebriche piane razionali di ordine n, i cui punti base assorbono n2−1 intersezioni di due curve generiche del sistema, le quali pertanto ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] classico riemanniano, la distanza geodetica d(x,y) tra due punti. Tale distanza è data da:
dove D=ds−1 e A è l'algebra delle funzioni lisce. Si osservi che ds ha la dimensione di una lunghezza, D ha la dimensione dell'inversa di una lunghezza e l ...
Leggi Tutto
algebrico
algèbrico agg. [der. di algebra] (pl. m. -ci). – Di algebra, che concerne l’algebra: calcoli a., somma a., analisi a., ecc.; in partic.: espressione a., ogni scrittura in cui compaiano numeri, lettere e indeterminate, queste ultime...
algebra
àlgebra s. f. [dal lat. mediev. algebra, e questo dall’arabo al-giabr, propr. «restaurazione», e quindi «riduzione» (dapprima nel sign. medico-chirurgico, e poi in quello matematico), che compare la prima volta in un trattato arabo...