• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
63 risultati
Tutti i risultati [109]
Matematica [63]
Algebra [28]
Fisica [21]
Geometria [17]
Analisi matematica [15]
Fisica matematica [12]
Biologia [10]
Temi generali [8]
Zoologia [5]
Meccanica quantistica [5]

WIRTINGER, Wilhelm

Enciclopedia Italiana (1937)

WIRTINGER, Wilhelm Matematico, nato a Ybbs, sul Danubio, il 19 luglio 1865. Studiò nelle università di Berlino, Vienna e Gottinga. Professore straordinario nell'università di Innsbruck nel 1895; ordinario [...] funzioni ipergeometriche, le loro generalizzazioni, le funzioni modulari, abeliane e automorfe, l'inversione d'un integrale abeliano (problema già studiato da F. Casorati), le equazioni differenziali lineari omogenee tra i cui integrali fondamentali ... Leggi Tutto
Mostra altri risultati Nascondi altri risultati su WIRTINGER, Wilhelm (1)
Mostra Tutti

traslazione

Dizionario delle Scienze Fisiche (1996)

traslazione traslazióne [Der. del lat. translatio -onis "atto ed effetto dell'operare una traslazione", da transferre (→ traslatore)] [ALG] Trasformazione di coordinate spaziali del tipo x'=x+a, con [...] , partecipa anche la Terra. ◆ [ELT] T. vincolata: v. forme, riconoscimento delle: II 682 d. ◆ [ALG] Gruppo delle t.: l'insieme di tutte le t. nel piano o nello spazio; si tratta di un gruppo abeliano in quanto la somma di due t. è commutativa. ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA
Mostra altri risultati Nascondi altri risultati su traslazione (2)
Mostra Tutti

commutativo

Dizionario delle Scienze Fisiche (1996)

commutativo commutativo [agg. Der. di commutare: → commutante] [ALG] Si dice di una struttura algebrica definita in un insieme da un'operazione binaria R tale che aRb=bRa, dove a, b sono gli elementi [...] dei numeri e nella geometria algebrica; attualmente utilizza le tecniche dell'algebra omologica e ha acquistato un chiaro carattere geometrico attraverso la teoria degli schemi. ◆ [ALG] Gruppo c.: lo stesso che gruppo abeliano: v. gruppo: III 127 f. ... Leggi Tutto
CATEGORIA: ALGEBRA

fondamentale

Enciclopedia on line

Botanica Sistema f. Complesso di vari tessuti, di cui fanno parte il midollo, i raggi midollari e la corteccia primaria con i vari elementi istologici (insieme dei parenchimi e dei tessuti di riempimento); [...] la somma di cammini, cioè il cammino ottenuto percorrendo l’uno dopo l’altro i due cammini addendi. È un gruppo non abeliano, la cui importanza sta nel fatto che è un invariante topologico. Religione La denominazione articoli f. è usata da teologi ... Leggi Tutto
CATEGORIA: ANATOMIA MORFOLOGIA CITOLOGIA – ACUSTICA – FISICA MATEMATICA – GEOMETRIA
TAGS: CHIESA CATTOLICA – APOLOGETICA – EPIDERMIDE – PARENCHIMI – MATEMATICA

SEVERI, Francesco

Enciclopedia Italiana - III Appendice (1961)

SEVERI, Francesco (XXXI, p. 554) Matematico, morto a Roma l'8 dicembre 1961. La teoria dei sistemi di equivalenza e delle corrispondenze algebriche sopra una superficie algebrica, successivamente estesa [...] ad esse è un'importante classe di varietà algebriche, le varietà quasi abeliane, caratterizzate dal possesso di un gruppo abeliano continuo a p parametri, generalmente transitivo, di trasformazioni birazionali in sé. Quando π = 2p si ricade nelle ... Leggi Tutto
TAGS: ISTITUTO NAZIONALE DI ALTA MATEMATICA – PONTIFICIA ACCADEMIA DELLE SCIENZE – GEOMETRIA ALGEBRICA – TEORIA DEI SISTEMI – GRUPPO ABELIANO
Mostra altri risultati Nascondi altri risultati su SEVERI, Francesco (3)
Mostra Tutti

ALGEBRA OMOLOGICA

Enciclopedia Italiana - IV Appendice (1978)

. Introduzione. - L'a. o. è stata già introdotta nella voce topologia, (App. III, 11, p. 960) in quanto è proprio in questa materia che essa trova le sue motivazioni d'origine. Infatti, in topologia, "teorie [...] un fissato anello A con unità. Ricordiamo che: 1) gli omomorfismi f: L S-107??? M di A-moduli a sinistra (o a destra), costituiscono un gruppo abeliano additivo Hom(L, M), (e se f, f′ ∈ Hom(L, M) e g, g′ ∈ Hom(M, N), si ha g S-108??? (f + f′) = g S ... Leggi Tutto
TAGS: RELAZIONE D'EQUIVALENZA – RISOLUZIONE PROIETTIVA – TEORIA DELLE CATEGORIE – GEOMETRIA ALGEBRICA – PRODOTTO TENSORIALE
Mostra altri risultati Nascondi altri risultati su ALGEBRA OMOLOGICA (1)
Mostra Tutti

QUILLEN, Daniel

Enciclopedia Italiana - V Appendice (1994)

QUILLEN, Daniel Carlo Cattani Matematico statunitense, nato a Orange (New Jersey) il 27 giugno 1940. Conseguito il Ph.D. in matematica alla Harvard University (1969), è stato professore di Matematica [...] agli spazi topologici compatti, in modo tale da far corrispondere a uno spazio topologico X e a un intero n un certo gruppo abeliano Kn(X). Formalizzata così la K-teoria topologica, H. Bass provò (1963) che alcuni oggetti, simili a K0 e a K1, si ... Leggi Tutto
TAGS: MASSACHUSETTS INSTITUTE OF TECHNOLOGY – TEORIA DELLE CATEGORIE – UNIVERSITÀ DI OXFORD – GEOMETRIA ALGEBRICA – HARVARD UNIVERSITY
Mostra altri risultati Nascondi altri risultati su QUILLEN, Daniel (2)
Mostra Tutti

modulo proiettivo

Enciclopedia della Scienza e della Tecnica (2008)

modulo proiettivo Luca Tomassini Classe di tutti i moduli su un fissato anello A con omomorfismi di moduli come morfismi (frecce) forma una categoria abeliana, usualmente indicata con i simboli A-mod [...] funtori, comunemente indicati Hom e ⊗Α. Il primo ha valori nella categoria dei gruppi abeliani e associa alla coppia di A-moduli M e N il gruppo abeliano HomΑ(M,N). Per f:M1→M e g:N→N1, le applicazioni f′:HomΑ(M,N)→ HomΑ(M1,N) e g′:HomΑ(M,N)→HomΑ (M ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: GRUPPO COMMUTATIVO – MORFISMO

sottogruppo

Enciclopedia on line

In matematica, insieme H di elementi di un gruppo G, tale che, mediante l’operazione di composizione definita in G, costituisce a sua volta un gruppo. In altre parole, H è s. di G se il ‘prodotto’ di due [...] l’insieme aHa–1 coincide con H. Se H è s. invariante di G, si può costruire il gruppo quoziente G/H. Esempi di s. invarianti: nel gruppo delle sostituzioni su n elementi, il gruppo alterno (➔ sostituzione). In un gruppo abeliano ogni s. è invariante. ... Leggi Tutto
CATEGORIA: LOGICA MATEMATICA
TAGS: GRUPPO ABELIANO – ELEMENTO NEUTRO – NUMERI INTERI – TRASLAZIONI – MATEMATICA
Mostra altri risultati Nascondi altri risultati su sottogruppo (2)
Mostra Tutti

CORPO ASTRATTO

Enciclopedia Italiana - II Appendice (1948)

. La teoria dei corpi (astratti) costituisce uno dei capitoli più profondamente studiati dell'algebra moderna (v. in questa App.); essa ha avuto origine da una celebre memoria di E. Steinitz del 1910, [...] di solito come un'addizione e una moltiplicazione), con le condizioni seguenti: a) Il sistema K costituisce un gruppo abeliano prendendo come operazione di composizione l'addizione; l'elemento unitario di tale gruppo costituisce lo "zero" del corpo ... Leggi Tutto
TAGS: TEOREMA FONDAMENTALE DELL'ALGEBRA – LIMITE DI UNA SUCCESSIONE – CORRISPONDENZA BIUNIVOCA – ESTENSIONE TRASCENDENTE – POLINOMIO IRRIDUCIBILE
1 2 3 4 5 6 7
Vocabolario
abeliano
abeliano agg. – Relativo al matematico norv. N. H. Abel (1802-1829); in partic.: gruppo a., lo stesso che gruppo (v.) commutativo; integrale abeliano, su una curva algebrica piana, ogni integrale di una funzione razionale valutata sulla curva.
gruppo
gruppo s. m. [dal germ. kruppa]. – 1. Insieme di più cose o persone, distinte l’una dall’altra, ma riunite insieme in modo da formare un tutto: un g. di case, di persone; un g. di stelle; un g. d’aziende; g. familiare, costituito dai membri...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali