• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

pari

Dizionario delle Scienze Fisiche (1996)
  • Condividi

pari


pari [Der. del lat. par paris] [LSF] Di cose quantitativamente uguali. ◆ [ALG] In contrapp. a dispari, di numero divisibile per 2, il quale ultimo è dunque l'unico numero primo pari; l'insieme dei numeri p. costituisce un anello commutativo. ◆ [ANM] Funzione p.: ogni funzione che resti inalterata se si sostituisce a ogni variabile il suo opposto. Così, una funzione f di una sola variabile x è p. se f(-x)= f(x), come capita per la funzione y=xn se n è p. (e ciò spiega la denomin.); il diagramma di una funzione p. y di una variabile x gode della proprietà di essere simmetrico rispetto all'asse delle y.

Vedi anche
eleménto invèrso invèrso, eleménto In algebra, considerato un insieme A, si dice inverso, elementoinverso, elemento di un elemento a appartenente ad A, rispetto a una data operazione binaria (∙) definita in A con elemento neutro e, un elemento a´ tale che siano verificate le relazioni a∙a´=a´∙a=e. In un gruppo, ogni ... divisibilità divisibilità filosofia Il problema dell’indefinita divisibilita del reale (o della materia) si presenta al pensiero speculativo dei Greci fin dall’età presocratica. Dalla sua asserzione (che tradizionalmente viene attribuita a Zenone d’Elea, mentre in realtà questi non fece che presupporla in taluni ... ordinata matematica Una delle coordinate cartesiane di un punto del piano o dello spazio, ed esattamente quella che si usa scrivere per seconda; le altre due sono l’ascissa (la prima) e la quota (la terza, nello spazio). Con riferimento al piano, dati due assi cartesiani ortogonali x e y (v. fig.), l’ordinata ... non commutativo In matematica, si dice di struttura nella quale sia definita un’operazione che non è commutativa (➔ commutativa, proprietà). Tali strutture hanno assunto un ruolo importante nella caratterizzazione della cosiddetta geometria non commutativo, che studia le proprietà di spazi funzionali attraverso quelle ...
Categorie
  • ALGEBRA in Matematica
  • ANALISI MATEMATICA in Matematica
  • TEMI GENERALI in Matematica
Vocabolario
pari¹
pari1 pari1 (ant. pare) agg. [lat. par paris]. – 1. a. Uguale ad altra persona o cosa nella qualità determinata dal complemento, o uguale in genere: siamo p. d’età, di statura, di forza; le due colonne sono p. d’altezza (o più comunem....
a pari
a pari locuz. lat. (sottint. ratione: «per una ragione simile»). – Nella logica, di ragionamento che consiste nel concludere da un caso dato a un caso simile; si contrappone ad a contrario.
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali