• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

Haar, misura di

Enciclopedia della Matematica (2013)
  • Condividi

Haar, misura di


Haar, misura di per un gruppo topologico compatto e abeliano G(⋅), è una misura di Borel μ che soddisfa le seguenti condizioni:

• μ(x ⋅ S) = μ(S ⋅ x) = μ(S) per ogni x ∈ G e ogni sottoinsieme misurabile S ⊆ G;

• μ(A) > 0 per ogni sottoinsieme aperto e non vuoto A ⊆ G;

• μ(E) < ∞ per ogni sottoinsieme compatto E ⊆ G.

Per esempio, la misura di Lebesgue è una misura di Haar sul gruppo moltiplicativo dei reali non nulli (→ Borel, misura di; → Lebesgue, misura di).

Vedi anche
Henry-Léon Lebesgue Matematico francese (Beauvais, Oise, 1875 - Parigi 1941), prof. all'univ. di Parigi, socio straniero dei Lincei (1925). Uno dei maggiori esponenti dell'indirizzo critico nella teoria delle funzioni di variabile reale, iniziato da K. Weierstrass. Le sue ricerche sulle teorie della misura e dell'integrazione ... Serge Lang Matematico (Parigi 1927 - Berkeley, California, 2005), prof. (poi emerito) alla Yale University (1972-2005). Studioso di analisi diofantea, della teoria dei numeri e della teoria delle funzioni modulari. È autore di numerosi trattati, tra cui vanno ricordati: Introduction to differentiable manifolds ... Julius Wilhelm Richard Dedekind Matematico tedesco (Brunswick 1831 - ivi 1916). Allievo di K. Fr. Gauss e di P. G. L. Dirichlet, insegnò nel politecnico di Zurigo (1858), poi in quello di Brunswick (dal 1862). Socio straniero dei Lincei (1911). La sua opera si pone sulla linea, che era stata di K. Fr. Gauss e A.-L. Cauchy ed era stata ... numero reale Ogni numero relativo razionale o irrazionale. I numeri r. sono dati, perciò, da tutti i possibili sviluppi decimali sia limitati sia illimitati, e questi ultimi sia periodici sia sprovvisti di periodo. Due differenti ordini di problemi suggerirono ai matematici l’opportunità di introdurre i numeri reali. ...
Tag
  • SOTTOINSIEME APERTO
  • MISURA DI LEBESGUE
  • GRUPPO TOPOLOGICO
  • MISURA DI BOREL
  • MISURABILE
Vocabolario
miṡura
misura miṡura s. f. [lat. mensūra, der. di mensus part. pass. di metiri «misurare»]. – 1. a. Il valore numerico attribuito a una grandezza, ottenuto ed espresso come rapporto tra la grandezza data e un’altra della stessa specie assunta...
miṡurare
misurare miṡurare (ant. meṡurare) v. tr. [lat. tardo mensurare, der. di mensura «misura»]. – 1. Determinare la misura di una grandezza; eseguire una misurazione; prendere (o trovare, stabilire, calcolare) le misure di qualche cosa: m. una...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali