• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

matrice esponenziale

Enciclopedia della Matematica (2013)
  • Condividi

matrice esponenziale


matrice esponenziale o esponenziale di una matrice, per una matrice quadrata A, di ordine n a coefficienti reali o complessi, è una matrice quadrata anch’essa di ordine n, indicata con eA, ottenuta con il seguente sviluppo in serie di potenze:

formula

dove la potenza della matrice A è calcolata mediante l’usuale prodotto righe per colonne. Questa serie di matrici è convergente e, quindi, la matrice esponenziale è ben definita. La funzione esponenziale è un caso particolare di matrice esponenziale: quello in cui n = 1 e la matrice A si riduce così a un numero reale o complesso. La matrice esponenziale gode di proprietà del tutto analoghe a quelle della funzione esponenziale. In particolare valgono, tra le altre, le seguenti proprietà:

• se A è la matrice nulla, allora eA = In, matrice identica;

• eA ⋅ e−A = In

• exA ⋅ eyA = e(x+y)A

• se AB = BA, allora eA ⋅ eB = eA+B

• se X è invertibile, allora

formula

dove AT indica la matrice trasposta di A. Si veda anche → matrici, serie di.

Vedi anche
funzióne esponenziale In matematica, ogni funzione del tipo y =a x, dove la variabile indipendente x compare come esponente. Se si suppone a  reale e maggiore di 1, e x  reale, la f.e. risulta univocamente definita per ogni valore reale e sempre crescente. In partic. si dà il nome di esponenziale alla funzione y =e x (e = ... matrice Anatomia Ammasso di cellule epiteliali alla cui attività si deve la formazione di un tessuto. M. dell’unghia L’ammasso di cellule dello strato onicogeno che si osserva in corrispondenza della radice dell’unghia e della lunula, e alla cui opacità è dovuto il colorito biancastro di quest’ultima. M. del ... esponente Nella matematica elementare, e. di una potenza è il numero di fattori uguali tra loro, il cui prodotto esprime il valore della potenza. È scritto accanto alla base della potenza in alto a destra: 53; (0,12)8, dove 3 e 8 sono gli e., 5 e 0,12 le basi. Quando si estende il concetto di potenza, l’e. può ... numeri complessi Si chiama c. ogni numero della forma a + i b, essendo a e b due numeri reali relativi (positivi, negativi o anche nulli) e rappresentando il simbolo i (unità immaginaria o immaginario) la radice quadrata di −1; l’addendo a si chiama la parte reale, l’addendo i b la parte immaginaria, b il coefficiente ...
Tag
  • ESPONENZIALE DI UNA MATRICE
  • FUNZIONE ESPONENZIALE
  • MATRICE TRASPOSTA
  • SERIE DI POTENZE
  • MATRICE QUADRATA
Vocabolario
esponenziale
esponenziale agg. e s. m. [der. di esponente]. – 1. Relativo all’esponente, come esponente. a. In matematica, funzione e., quella del tipo y = ax, in cui cioè la variabile indipendente x compare come esponente (per a reale e maggiore di...
matrice
matrice s. f. [dal lat. matrix -icis «madre; utero»]. – 1. a. Sinon. non com. di madre, soltanto nell’espressione merid. chiesa m., o assol. matrice, lo stesso che chiesa madre (v. madre). b. Sinon. letter. di utero, di uso com. nel linguaggio...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali