• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

logica matematica

di Walter Maraschini - Enciclopedia dei ragazzi (2006)
  • Condividi

logica matematica

Walter Maraschini

Simboli per ragionare correttamente

Quando due amici discutono non sempre sono d’accordo: possono avere intenzioni e gusti diversi, oppure opinioni contrastanti sul mondo o su altre persone. Ma esiste un criterio oggettivo per affermare chi ha ragione e chi torto? Se parliamo di calcolo aritmetico sì: basta fare i conti rispettando le regole o usando una calcolatrice. La logica matematica cerca di ricondurre i ragionamenti a una situazione simile a quella dell’aritmetica; tenta, cioè, di procedere con i ragionamenti come con i calcoli per poter stabilire, con certezza, quando sono corretti e quando sono errati

Logica simbolica

Un ragionamento è costituito da una serie di ‘passaggi’: si parte da alcune premesse e si arriva a determinate conclusioni. Per esempio, il seguente è un ragionamento corretto anche se molto sintetico:

Se Alex è un gatto, allora ha la coda (1a premessa)

Alex è un gatto (2a premessa)

–––––––––––––––––––––––––––––––––––––––––––––––

quindi Alex ha la coda (conclusione)

Non interessa se la prima o la seconda premessa sono vere, ciò che importa è la struttura (la logica) del ragionamento: se accettiamo le due premesse, allora dobbiamo accettare anche la conclusione. Non si pretende infatti di stabilire una verità assoluta; piuttosto si esamina la correttezza del ragionamento che ‘non deve fare una grinza’.

La logica non si occupa del contenuto di un ragionamento, di ciò di cui si parla, ma di come esso si sviluppa, della sua forma e per questo motivo è chiamata anche logica formale. Poiché interessa la forma e non il contenuto, al posto delle frasi in lingua italiana è più semplice usare simboli. Per esempio, possiamo indicare con le lettere A e B le frasi precedenti: «Alex è un gatto» (A) e «Alex ha la coda» (B).

Il ragionamento precedente viene allora scritto così:

Se A, allora B

A (che si suppone vera)

–––––––––––––––––––––––––––––––––––––––––––––––

quindi B

Il ragionamento è valido qualunque sia il significato dei simboli A e B. La logica formale è detta perciò anche logica simbolica: con i simboli sono espressi i suoi ‘oggetti’ e le sue regole riguardano la trasformazione di simboli, indipendentemente dal loro significato. L’operare su simboli con regole determinate è tipico della matematica: ecco perché si parla anche di logica matematica.

Le proposizioni

Gli oggetti della logica sono le affermazioni per le quali si può dare un giudizio di verità, si può cioè dire se sono vere o false. Affermazioni del genere sono dette proposizioni. Sono per esempio proposizioni: «Oggi piove» (vera o falsa a seconda del giorno o del luogo),

«La Terra è piatta» (falsa, ma nel passato considerata vera), «Due più due non fa cinque» (vera nel calcolo aritmetico).

Non sono proposizioni, invece, frasi come «Stai zitto!» (è un ordine, e non si può dire se è vero o falso); «Che ore sono?» (è una domanda; esige una risposta, non un giudizio), «Il cane tornavano casa» (non è né vera né falsa, ma semplicemente sgrammaticata).

La connessione di proposizioni

Esaminiamo le due affermazioni «Alice è bugiarda, ma bella» e «Alice è bella, ma bugiarda». Esprimono lo stesso concetto, lo stesso giudizio? No, perché in entrambe prevale l’ultima parte della affermazione: chi pronuncia la prima fa prevalere, nei suoi gusti, il giudizio di bellezza; chi adopera la seconda sottolinea che la ragazza è bugiarda. Da un punto di vista logico, però, le due proposizioni sono equivalenti. In entrambe infatti si afferma che Alice è sia bugiarda sia bella e la proposizione sarebbe scritta come «Alice è bugiarda e bella».

Per analizzare la correttezza dei ragionamenti occorre perciò prima isolarne gli aspetti puramente logici. Per esempio, nel linguaggio comune, le proposizioni vengono combinate tra loro attraverso diverse particelle, con diverse sfumature di significato: e, ma, invece, però, anche, oppure, o, se… allora, infatti, quindi, non. La logica matematica non si occupa delle numerose sfumature del linguaggio (per esempio delle intenzioni, delle ironie, o altro), ma soltanto della verità o falsità delle proposizioni. Di conseguenza le particelle utilizzate sono in numero minore rispetto al linguaggio comune e si chiamano connettivi: abbiamo la congiunzione (e), la disgiunzione (o), la negazione (non) e l’implicazione (se… allora…).

Per esempio, la proposizione «Alice è bugiarda e bella» (C) è la congiunzione delle due proposizioni «Alice è bugiarda» (A) e «Alice è bella» (B). Ognuna può essere vera (V) o falsa (F) e naturalmente esistono tutte le combinazioni possibili. La proposizione C nel suo complesso è vera soltanto se sono vere sia A sia B e per esprimere questo si costruisce uno schema come il seguente chiamato tavola della verità:

A B A e B

V V V

V F F

F V F

F F F

In modo analogo si costruisce la tavola di verità per la disgiunzione o. La tavola esprime il fatto che l’affermazione «Alice è bugiarda o bella» è falsa soltanto nel caso in cui Alice non è né bugiarda né bella.

A B A o B

V V V

V F V

F V V

F F F

L’implicazione

Un altro connettivo logico fondamentale è l’implicazione, il cui scopo è quello di esprimere i ragionamenti del tipo «se A allora B», come nella frase «Se piove, allora porto l’ombrello».

L’implicazione è un connettivo particolarmente importante perché in questa forma, generalmente, si propongono i teoremi matematici: «Se un triangolo ha due lati uguali, allora ha due angoli uguali» e «Se un numero è multiplo di 4, allora è multiplo di 2».

Quest’ultima proposizione è formata da due parti: «un numero è multiplo di 4» (A) e «un numero è multiplo di 2» (B). La proposizione «Se A, allora B» è complessivamente vera perché non può verificare il fatto che un numero multiplo di 4 non sia anche multiplo di 2. Una implicazione è falsa soltanto nel caso in cui la premessa è vera e la conseguenza è falsa.

La sua tavola di verità è pertanto la seguente:

A B se A allora B

V V V

V F F

F V V

F F V

La logica matematica ha regole ferree, spesso trascurate nel linguaggio quotidiano. Quando si afferma «Se A, allora B» nulla si dice di cosa succederà nel caso in cui A non si verifichi. Per esempio il proverbio «Se son rose fioriranno» può essere riscritto così: «Se una pianta è di rose, allora fiorirà». Non si dice nulla di cosa accadrà nel caso in cui la pianta non sia di rose: essa potrebbe fiorire come non fiorire. Non è dunque vero che «Se non son rose, non fioriranno».

Dalla logica alla logica matematica

La logica, intesa come analisi della correttezza dei ragionamenti, è una disciplina molto antica fondata dal filosofo greco Aristotele, vissuto nel 4° secolo a.C. Per secoli Aristotele fu considerato un’autorità indiscussa e insuperabile e fu solo nel 17° secolo che il matematico e filosofo tedesco Gottfried W. Leibniz introdusse un linguaggio simbolico universale (da lui chiamato characteristica universalis) per i ragionamenti. In tale modo, scriveva Leibniz, due persone in disaccordo avrebbero potuto dire: «Ebbene, calcoliamo!».

La logica matematica vera e propria nasce però alla metà del 19° secolo con il matematico inglese George Boole, che fa ricorso ai simboli dell’aritmetica e dell’algebra per trattare sia le proposizioni sia le operazioni eseguite su di esse, e adopera il segno 3 per la congiunzione e il segno 1 per la disgiunzione. Per primo, inoltre, Boole utilizza i numeri 1 e 0 per indicare vero e falso, anticipando così il sistema binario che sta alla base del funzionamento dei moderni computer (linguaggi di programmazione).

La logica dei proverbi

I proverbi sono sentenze popolari che spesso assumono la forma logica «se… allora…».

Come esempio traduciamo in forma logica alcuni proverbi:

«Chi la fa l’aspetti»: se ci si aspetta una ritorsione allora si è commesso qualcosa di illecito.

«Rosso di sera bel tempo si spera»: se il cielo al tramonto è rosso, allora si prevede bel tempo per il giorno successivo.

«Tra i due litiganti il terzo gode»: se fra tre persone ce ne sono due che litigano, allora il terzo che non litiga ne trae profitto.

«Non c’è due senza tre»: se accadono due episodi dello stesso tipo, allora ne accadono tre.

«L’amore non è bello se non è litigarello»: se non si litiga, allora l’amore non è bello.

Vedi anche
George Boole Boole ‹bùul›, George. - Matematico e logico inglese (Lincoln 1815 - Cork 1864). Già nel 1844 ebbe riconoscimenti dalla Royal Society; prof. di matematica dal 1849 al Queen College di Cork. Autore di ricerche sulle equazioni differenziali e sul calcolo delle differenze finite, è tuttavia principalmente ... proposizione In genere, ciò che si enuncia, si dichiara, si afferma, e la frase stessa che contiene l’enunciato. filosofia 1. proposizione ed enunciato Nella logica e nella filosofia del linguaggio contemporanee si distingue proposizione da enunciato, intendendo con quest’ultimo termine un’unità sintattica composta ... sillogismo Termine filosofico con cui Aristotele designò la forma fondamentale di argomentazione logica (sillogismo categorico), costituita da tre proposizioni dichiarative connesse in modo tale che dalle prime due, assunte come premesse, si possa dedurre una conclusione (per es., «tutti gli uomini sono mortali, ... logica filosofia Disciplina che studia le condizioni di validità delle argomentazioni deduttive. 1. La logica antica I vocaboli ἡ λογική (τέχνη), τὰ λογικά si stabilizzarono nel significato di «teoria del giudizio e della conoscenza» nell’ambiente protostoico, pur conservando λογικός per tutta la grecità ...
Indice
  • 1 Logica simbolica
  • 2 Le proposizioni
  • 3 La connessione di proposizioni
  • 4 L’implicazione
  • 5 Dalla logica alla logica matematica
  • 6 La logica dei proverbi
Categorie
  • LOGICA in Filosofia
Tag
  • LINGUA ITALIANA
  • GEORGE BOOLE
  • PROPOSIZIONE
  • ARISTOTELE
  • ARITMETICA
Altri risultati per logica matematica
  • compattezza logica
    Enciclopedia della Matematica (2013)
    compattezza logica proprietà di una classe di modelli M tale che, comunque sia preso un insieme infinito di enunciati E, questo ha un modello in M se e solo se ha un modello in M ogni sottoinsieme finito di enunciati di E. Il teorema di compattezza afferma che un insieme di enunciati Γ ammette un modello ...
  • logica matematica
    Dizionario di filosofia (2009)
    Parte della logica strutturata in un sistema di calcolo formale, elaborata soprattutto in età contemporanea. Sintassi e semanticaLe espressioni di un discorso deduttivo possono essere considerate o sintatticamente, cioè formalmente come oggetti grafici combinabili tra loro, o semanticamente, cioè ...
  • lògica matemàtica
    Enciclopedia on line
    lògica matemàtica Branca della logica, che utilizza un linguaggio simbolico e adotta un sistema di calcolo di tipo algebrico per esaminare le espressioni di un discorso deduttivo. Queste ultime possono essere considerate formalmente come oggetti grafici combinabili tra loro (sintassi) o in relazione ...
  • Logica matematica
    Enciclopedia della Scienza e della Tecnica (2007)
    Silvio Bozzi Pur potendo vantare come erede della logica formale un'origine risalente almeno ad Aristotele, come disciplina scientifica la logica matematica è un acquisto recente. Possiamo far risalire la sua data di nascita al massimo alla metà dell'Ottocento, con i lavori di George Boole sull'analisi ...
  • LOGICA MATEMATICA
    Enciclopedia Italiana - IV Appendice (1979)
    Aldo Marruccelli Alberto Pasquinelli (XXI, p. 398; App. II, 11, p. 226; III, 1, p. 999). Princìpi di logica matematica. È opportuno premettere all'articolo che dà notizia dei progressi verificatisi nell'ambito della l. m. nell'ultimo quindicennio una sintesi dei princìpi fondamentali della l. m. medesima, ...
  • Logica matematica
    Enciclopedia del Novecento (1978)
    Abraham Robinson *La voce enciclopedica Logica matematica è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un’introduzione di Gabriele Lolli e un saggio di Beppo Levi. sommario: 1. Introduzione. 2. L'evoluzione dei fondamenti della matematica. 3. Filosofia della matematica. 4. Fondamenti ...
  • LOGICA MATEMATICA
    Enciclopedia Italiana - III Appendice (1961)
    (XXI, p. 398; App. II, 11, p. 226) Alberto PASQUINELLI Ludovico GEYMONAT MATEMATICA Il recente sviluppo della l. m. è caratterizzato da un ulteriore consolidamento istituzionale e da particolari estensioni, da una generale accentuazione del rigore e da ricorsi a nuove procedure. L'impostazione linguistica, ...
  • LOGICA MATEMATICA
    Enciclopedia Italiana - II Appendice (1949)
    (XXI, p. 398) Ludovico GEYMONAT MATEMATICA Negli ultimi decennî si è notevolmente sviluppata in direzioni assai diverse. L'indirizzo di Peano. - L'uso del simbolismo di G. Peano, che pareva aver ricevuto la più larga applicazione possibile nella 5ª edizione del Formulario di Matematica (1908), si ...
  • LOGICA MATEMATICA
    Enciclopedia Italiana (1934)
    Beppo LEVI * . Logica matematica ovvero logistica o logica simbolica o algebra della logica o logica teorica o logica della matematica sono termini fra loro parzialmente equivalenti, per indicare sfumature e svolgimenti diversi di una dottrina il cui nascimento si può, per motivi diversi, far risalire ...
Mostra altri risultati
Vocabolario
lògica
logica lògica (ant. lòica) s. f. [dal lat. logĭca, gr. λογική (sottint. τέχνη «arte»), dall’agg. λογικός: v. logico1]. – 1. Nel pensiero greco classico, la scienza del logos, ossia del pensiero in quanto viene espresso; in partic., in Aristotele,...
matemàtica
matematica matemàtica (ant. e raro mattemàtica) s. f. [dal lat. mathematĭca (sottint. ars), gr. μαϑηματική (sottint. τέχνη); v. matematico]. – 1. a. Originariamente, la scienza razionale dei numeri (aritmetica, intesa come scienza della...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali