• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

Jonquières, Jean-Philippe-Ernest Fauque de

Enciclopedia on line
  • Condividi

Matematico francese (Carpentras 1820 - Mousans-Sartoux, Grasse, 1901). Entrato nella marina da guerra nel 1835, si ritirò con il grado di ammiraglio nel 1885 e si dedicò agli studî di matematica. Dotato di acuto intuito, sviluppò la geometria secondo l'indirizzo proiettivo sintetico di J.-V. Poncelet. L'uso di opportune tecniche geometriche, come il principio di continuità e il metodo dello spezzamento della curva, lo portò a dare soluzione a difficili problemi di geometria numerativa. Le trasformazioni che portano il suo nome sono una importante classe delle trasformazioni dette cremoniane, dal nome dell'italiano L. Cremona.

Vedi anche
mètodo sperimentale sperimentale, mètodo Procedimento che si affermò nell'indagine scientifica a partire dagli inizi del 17° secolo. Consiste nel sottoporre le ipotesi scientifiche a procedure di controllo sperimentale, che servono a confermarle (nel qual caso le ipotesi si trasformano in leggi scientifiche) o a confutarle. ... curva matematica 1. Generalità Nel linguaggio matematico, sinonimo di linea, intendendosi quindi anche la retta come una particolare curva. Una definizione di curva valida in ogni caso non è possibile per il fatto che non sono ben precisati i requisiti che deve avere un ente per potersi chiamare curva. Le ... applicazione matematica Il concetto di applicazione è una generalizzazione del concetto classico di funzione (➔ corrispondenza). Si parla di applicazione di un insieme P in un insieme Q, quando tra i due si stabilisce una corrispondenza del tipo seguente: a ogni elemento di P corrisponde un ben determinato elemento ... geometria In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali. 1. Cenni storici 1.1 L’antichità. - L’origine della geometria è legata a concreti problemi di misurazione del terreno (nacque a scopi agrimensori nella zona del delta del Nilo); si trattava quindi essenzialmente ...
Categorie
  • BIOGRAFIE in Matematica
Tag
  • CARPENTRAS
  • MATEMATICA
  • GRASSE
Vocabolario
de
de 〈dé〉 prep. [lat. de]. – Forma che assume la prep. di quando è seguita dall’articolo, sia che si fonda con questo (del, dello, della, ecc.), sia che si scriva divisa (de ’l, de lo, de la, ecc.) come talvolta nell’uso letter. (è comune,...
de’
de' de’ 〈dé〉 prep. – Forma tronca, di uso tosc. o letter., della prep. articolata dei.
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali