• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

involucro convesso

Enciclopedia della Matematica (2013)
  • Condividi

involucro convesso


involucro convesso in topologia, è detto involucro convesso, o anche inviluppo convesso, di un sottoinsieme A di uno spazio vettoriale reale l’intersezione di tutti gli insiemi convessi che contengono A o, equivalentemente, il più piccolo insieme convesso contenente A (nel senso che qualunque altro insieme convesso che contenga A contiene anche l’involucro convesso: → convessità). L’involucro convesso di un insieme convesso coincide con l’insieme stesso. L’involucro convesso di A è costituito da tutte le combinazioni lineari convesse di punti di A, cioè da punti del tipo

formula

dove gli xi sono punti di A e i coefficienti ki sono numeri reali positivi tali che

formula

Se A è un insieme finito di punti, il suo involucro convesso è detto politopo (convesso). Se A è costituito da k + 1 punti x0, x1, ..., xk in posizione generica (ossia i vettori x1 − x0, x2 − x1, ..., xk − xk−1 sono linearmente indipendenti), l’involucro convesso di A si dice k-simplesso di vertici x0, x1, ..., xk (→ simplesso). Nozione strettamente collegata è quella di involucro lineare di un insieme A contenuto in uno spazio vettoriale, ottenuto come intersezione di tutti i sottospazi lineari contenenti A.

Vedi anche
convessità fig. 1 fig. 2convessità Una figura (piana o solida) è detta convessa se, dati due suoi punti qualunque, il segmento che li congiunge appartiene interamente alla figura. Più in generale questa definizione si applica a tutti i sottoinsiemi di un generico spazio vettoriale reale. Casi notevoli: a) un angolo ... politopo In matematica, un p. nello spazio euclideo En a n dimensioni è l’analogo di un poligono nel piano e di un poliedro nello spazio. P. convesso è la parte di En racchiusa da un conveniente numero di iperpiani (almeno n+1) scelti in modo generico. In un p. si ha un certo numero N0 di vertici e inoltre N1 ... intersezione Matematica Nella geometria elementare, l’insieme dei punti comuni a due o più insiemi dati, sinonimo di interferenza. In geometria algebrica tale insieme si chiama interferenza, mentre si riserva il nome di i. al medesimo insieme quando i suoi punti siano considerati con la loro molteplicità di i.; così, ... vertice In geometria, il punto d’incontro dei lati di un poligono o il punto in cui concorrono spigoli e facce di un poliedro, o di un angoloide. In una conica, si chiama v. ognuno dei punti d’incontro della conica stessa con un suo asse. In geometria differenziale, v. di una linea, ogni punto di essa nel quale ...
Tag
  • COMBINAZIONI LINEARI
  • SPAZIO VETTORIALE
  • INSIEME CONVESSO
  • NUMERI REALI
  • INTERSEZIONE
Vocabolario
invòlucro
involucro invòlucro (ant. o poet. involùcro) s. m. [dal lat. involŭcrum, der. di involvĕre «involgere»]. – 1. Con sign. generico, ciò che involge un oggetto, costituendo per esso un rivestimento, un riparo, una custodia e sim.; di oggetti...
convèsso
convesso convèsso agg. [dal lat. convexus «ricurvo», der. di convehĕre «raccogliere insieme, condurre», comp. di con- e vehĕre «trasportare»]. – In genere, di corpo che si presenta ricurvo come la parte esterna di un cerchio o di una sfera...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali