• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

funzione implicita

Enciclopedia della Matematica (2017)
  • Condividi

funzione implicita


funzione implicita una funzione φ(x) si dice definita implicitamente dall’equazione ƒ (x, y) = 0 se in un intervallo U risulta ƒ(x, φ(x)) ≡ 0. Una stessa equazione ƒ(x, y) = 0 può definire implicitamente più funzioni φ(x): per esempio, l’equazione x 2 + y 2 − 1 = 0 definisce implicitamente in [−1, 1] le due funzioni

Enciclopedia della Matematica formula lettf 04190 001.jpg

Di fronte a un’equazione ƒ(x, y) = 0 si deve dunque stabilire nell’ordine se essa definisca implicitamente qualche funzione φ, quante ne definisca e che cosa si possa dire di tali funzioni senza possederne la rappresentazione analitica esplicita. Se l’equazione ammette una soluzione (x0, y0), il teorema di → Dini fornisce delle condizioni sufficienti affinché in un intorno W = U × V di P0(x0, y0) l’equazione sia univocamente risolubile rispetto a una delle variabili (per esempio, y) e permette anche di calcolare nel punto x0 le derivate della funzione implicita così individuata. Al di fuori di W in generale esisteranno altre soluzioni e quindi possibilmente altre funzioni definite implicitamente dalla medesima equazione. In corrispondenza di un punto singolare, invece, è possibile che il grafico di una relazione ƒ(x, y) = 0 non sia esprimibile in forma di funzione, ma possa presentare conformazioni più complicate.

Vedi anche
singolarità fisica In fluidodinamica, qualsiasi punto del campo di moto di un fluido irrotazionale, non viscoso e a densità costante in cui la funzione potenziale di velocità Φ assuma valore infinito o non sia monovalore (detto più propriamente punto singolare). Le s. possono essere puntiformi (sorgenti e pozzi), ... applicazione Matematica Il concetto di a. è una generalizzazione del concetto classico di funzione (➔ corrispondenza). Si parla di a. di un insieme P in un insieme Q, quando tra i due si stabilisce una corrispondenza del tipo seguente: a ogni elemento di P corrisponde un ben determinato elemento di Q, mentre un elemento ...
Tag
  • TEOREMA DI → DINI
  • PUNTO SINGOLARE
Vocabolario
implìcito
implicito implìcito agg. [dal lat. implicĭtus, part. pass. di implicare, propr. «inviluppato, confuso insieme»]. – 1. Di giudizio o concetto o fatto che, senza essere formalmente ed espressamente enunciato, è tuttavia contenuto, sottinteso,...
funzióne
funzione funzióne s. f. [dal lat. functio -onis, der. di fungi «adempiere»]. – 1. Attività svolta abitualmente o temporaneamente in vista di un determinato fine, per lo più considerata nel complesso di un sistema sociale, burocratico, ecc....
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali