• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

Fuchs

Enciclopedia della Matematica (2017)
  • Condividi

Fuchs


Fuchs Lazarus Immanuel (Mosina, Poznań, Prussia, oggi Polonia, 1833 - Berlino 1902) matematico tedesco. È noto per i suoi lavori di analisi e, in particolare, per i suoi studi sulle equazioni differenziali. Dopo gli studi all’università di Berlino, conseguì il dottorato sotto la guida di K. Weierstrass, che lo introdusse alla teoria delle funzioni. Dopo il dottorato insegnò matematica nelle scuole superiori finché, nel 1865, divenne docente all’università di Berlino. Insegnò quindi a Greifswald, a Göttingen e, dal 1875, a Heidelberg. Tra i suoi contributi va segnalata la sua caratterizzazione di una particolare classe di equazioni differenziali lineari nel campo complesso, detta classe di Fuchs, aventi come coefficienti funzioni analitiche e le cui singolarità, se esistenti, sono poli di ordine 1 (si veda anche il ventunesimo problema alla voce → Hilbert, problemi di). Nell’ambito della teoria delle funzioni, partendo dallo studio degli integrali ellittici definì un particolare tipo di funzioni automorfe, ossia aventi la proprietà di assumere lo stesso valore per una successione uniforme dei valori dell’argomento, note come funzioni fucsiane, che per il loro carattere di periodicità si presentano come estensione e generalizzazione delle funzioni ellittiche. Negli ultimi dieci anni della sua vita fu redattore della rivista di Crelle «Journal für die reine und angewandte Mathematik».

Vedi anche
Klein, Felix Matematico tedesco (Düsseldorf 1849 - Gottinga 1925). Autore di rilevanti contributi alla geometria, realizzò una classificazione di tale materia fondata sul concetto di gruppo, studiò le superfici algebriche (in topologia l'otre di K. è una superficie non orientabile a una sola faccia) e si interessò ... Karl Theodor Wilhelm Weierstrass Matematico (Osterfeld, Münster, 1815 - Berlino 1897). Prof. all'univ. di Berlino, membro dell'Accademia di Berlino,  fu celebrato dai matematici contemporanei come il più grande analista vivente. Portano il suo nome molti teoremi sia nell'analisi infinitesimale, sia nella teoria delle funzioni. Vita ... Journal für reine und angewandte Mathematik Periodico di matematica fondato nel 1826 da A.L. Crelle e detto perciò giornale di Crelle. numeri complessi Si chiama c. ogni numero della forma a + i b, essendo a e b due numeri reali relativi (positivi, negativi o anche nulli) e rappresentando il simbolo i (unità immaginaria o immaginario) la radice quadrata di −1; l’addendo a si chiama la parte reale, l’addendo i b la parte immaginaria, b il coefficiente ...
Tag
  • EQUAZIONI DIFFERENZIALI LINEARI
  • EQUAZIONI DIFFERENZIALI
  • INTEGRALI ELLITTICI
  • FUNZIONI ELLITTICHE
  • FUNZIONI ANALITICHE
Altri risultati per Fuchs
  • FUCHS, Lazarus
    Enciclopedia Italiana (1932)
    Giovanni Lampariello Matematico, nato a Moschin presso Posen il 5 maggio 1833, morto a Berlino il 26 aprile 1902. Fu professore alle università di Heidelberg e di Berlino. Al F. si debbono fondamentali ricerche sulla teoria delle equazioni differenziali lineari ordinarie; il suo nome è specialmente ...
Vocabolario
fùcsia¹
fucsia1 fùcsia1 s. f. [lat. scient. Fuchsia, nome coniato nel 1693 dal botanico fr. Ch. Plumier in onore del naturalista ted. L. Fuchs (1501-1566)]. – 1. Genere di piante onagracee, comprendente un’ottantina di specie arboree o arbustive...
multilìngue
multilingue multilìngue (meno com. moltilìngue) agg. [comp. di multi- e lingua, sul modello di bilingue]. – 1. non com. Che ha molte lingue: un mostro dalla bocca m.; fiamma multilingue. 2. a. Scritto o redatto in parecchie lingue: documento,...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali