• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

finito-dimensionale

Dizionario delle Scienze Fisiche (1996)
  • Condividi

finito-dimensionale


finito-dimensionale [agg. Unione di finito e dimensionale "che ha dimensioni finite"] [ANM] Integrale f.: l'usuale integrale multiplo, in contrapp. a integrale sui cammini.

Vedi anche
geometria In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali. 1. Cenni storici 1.1 L’antichità. - L’origine della geometria è legata a concreti problemi di misurazione del terreno (nacque a scopi agrimensori nella zona del delta del Nilo); si trattava quindi essenzialmente ... spettro In varie discipline scientifiche e tecniche, termine frequentemente usato per indicare la composizione armonica di una grandezza variabile nel tempo. botanica spettro biologico Lo spettro ottenuto dalle percentuali delle diverse forme biologiche. Originariamente queste forme erano raggruppate in 5 ... ortogonale In geometria elementare si dice di due enti che formano tra loro un angolo retto. ● Due rette r, s del piano si dicono ortogonale (o perpendicolari) se si intersecano formando quattro angoli retti (fig. 1 A); una retta r dello spazio si dice ortogonale (o perpendicolare) a un piano α se incontra il ... determinante biologia Termine introdotto da A. Weismann per indicare presunti aggregati di molecole contenuti nel nucleo delle cellule sessuali e che conterrebbero i fattori per la determinazione delle cellule. ● In immunologia, determinante antigenico, sito dell’antigene contro cui è diretta la specificità di ...
Categorie
  • ANALISI MATEMATICA in Matematica
Altri risultati per finito-dimensionale
  • spazio vettoriale, dimensione di uno
    Enciclopedia della Matematica (2013)
    spazio vettoriale, dimensione di uno massimo numero di vettori appartenenti allo spazio e linearmente indipendenti (→ spazio vettoriale).
Vocabolario
dimensionale
dimensionale agg. [der. di dimensione]. – Che è relativo alle dimensioni: la percezione d.; stabilità d. di un materiale al caldo, al freddo. In partic., analisi (o calcolo) d., quella parte della fisica matematica che studia e ricerca...
finito
finito agg. [part. pass. di finire]. – 1. a. Giunto o condotto a termine, compiuto: arrivare a spettacolo f.; sono ormai due anni f. che ha lasciato il paese. Frequente nell’uso fam. la locuz. farla finita (con la indeterminato), smettere...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali