• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

binormale

Dizionario delle Scienze Fisiche (1996)
  • Condividi

binormale


binormale [agg. e s.f. Comp. di bi- e normale] [FSD] Nella cristallografia, come s.f., equivale ad asse ottico primario. ◆ [ALG] Retta b. (o, assolut., binormale s.f.): per una curva sghemba c in un suo punto P è la perpendicolare condotta per P al piano osculatore in P a c; insieme alla tangente e alla normale principale, forma il cosiddetto triedro principale relativo a c nel suo punto P: → Frénet, Fréderic-Jean: Formule di Frénet. ◆ [ALG] Versore b.: il versore avente la direzione della b. a una curva e verso opportunamente scelto.

Vedi anche
Frédéric-Jean Frénet Frénet ‹frenè›, Frédéric-Jean. - Matematico (Périgueux, Dordogne, 1816 - ivi 1900); prof. alla università (dal 1848) di Lione. Portano il suo nome tre formule fondamentali di geometria differenziale delle curve. triedro Nella geometria elementare, la parte (illimitata) di spazio racchiusa dai tre angoli individuati da tre semirette (non complanari) uscenti da un punto, a due a due. Gli angoli individuati dalle tre semirette si dicono facce del triedro, le semirette spigoli, il loro punto di concorso vertice, gli angoli ... perpendicolarità perpendicolarità In geometria piana, relazione che sussiste tra rette che intersecandosi formano quattro angoli uguali. Nello spazio, la relazione di perpendicolarita sussiste tra due piani se essi si intersecano formando quattro diedri uguali; si parla di perpendicolarita anche tra due rette sghembe ... versore Nella scienza e nella tecnica, vettore di modulo unitario, adimensionato, che caratterizza un orientamento (cioè una direzione e un verso): data una retta orientata e staccato su essa un segmento orientato r, il versore della retta vale r/r. Il prodotto di uno scalare v per un versore u dà il vettore ...
Categorie
  • ALGEBRA in Matematica
  • FISICA DEI SOLIDI in Fisica
  • FISICA MATEMATICA in Fisica
Vocabolario
binormale
binormale agg. e s. f. [comp. di bi- e normale]. – 1. In geometria: retta b. (o più comunem. la binormale) a una curva sghemba in un suo punto P è la perpendicolare condotta per P al piano osculatore in P alla curva stessa; versore b. è...
binormalità
binormalita binormalità s. f. [der. di binormale]. – Nella logica matematica, la condizione di ciò che è binormale, ed è una delle formulazioni equivalenti del concetto generale di ricorsività.
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali