• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X

Archimede

Dizionario di filosofia (2009)
  • Condividi

Archimede


Matematico e fisico siracusano (Siracusa 287 - ivi 212 a.C.). È stato uno dei più grandi matematici dell’antichità. Probabilmente allievo di Euclide, compì forse un viaggio in Egitto, studiando ad Alessandria; tornò poi a Siracusa, dove scrisse la maggior parte delle sue opere. Si dice che qui morì, ucciso da un soldato romano nel sacco della città (212 a.C.), alleata di Cartagine; e che alla difesa di Siracusa A. cooperasse con geniali ritrovati scientifici e macchine di guerra (specchi ustori, ecc.). La leggenda vuole che il soldato gli ingiungesse più volte di seguirlo dal console; che A., assorto in un calcolo, non gli desse ascolto e che il soldato allora, irato, lo trafiggesse. Le opere di A., a quanto pare, non furono mai raccolte in un corpo unico; varie di esse scomparvero fin dai tempi antichi; alcune furono tradotte in latino nel Medioevo; nel Rinascimento, ricercate attivamente, furono pubblicate sia in versioni (F. Commandino, 1558) sia nel testo greco (Basilea 1544) e diligentemente studiate da coloro che furono gli iniziatori e costruttori del calcolo infinitesimale, che appare quindi, in un certo senso, come la logica continuazione degli studi di A. (per quanto i metodi infinitesimali usati da A., contenuti nel Metodo, fossero a essi sconosciuti). Le principali opere matematiche di A. pervenute sono: (1) Quadratura della parabola, dove A. dimostra con vari metodi che «l’area del segmento parabolico vale 2/3 dell’area del triangolo circoscritto che ha un lato coincidente con la corda». (2) Della sfera e del cilindro, in 2 libri: nel primo si dà l’area della superficie sferica e il volume della sfera, nel secondo sono affrontati argomenti più difficili; è, per es., risolto il problema (di terzo grado) di «tagliare una sfera in due parti con un piano, in modo che i due segmenti della sfera siano tra loro in un rapporto dato». (3) Delle spirali, in cui A. dà per la prima volta una definizione di moto rettilineo uniforme, di moto circolare uniforme nonché della loro composizione. (4) Dei conoidi e degli sferoidi, sull’area dell’ellisse, sul volume dell’ellissoide e del paraboloide rotondo. (5) Misura del circolo, che contiene la prima determinazione del valore di π, rapporto tra le lunghezze di una circonferenza e del suo diametro. (6) L’arenario, in cui A. si propone di contare il numero dei granelli di sabbia che riempirebbero una sfera avente per centro il Sole e giungente fino alle stelle fisse; in quest’opera A., per primo, ha tentato una determinazione del diametro del disco solare trovando, con un ingegnosissimo metodo, che «il diametro del Sole è meno di 90°/164 ed è più di 90°/200», è cioè compreso tra 33′ e 27′: in effetti il diametro angolare del Sole varia tra 32′ 36″ (al perigeo, primi di gennaio) e 31′ 32″ (all’apogeo, primi di luglio). (7) Il Metodo (o Avviamento), scoperto nel 1906 da J.H. Heiberg in un manoscritto di Costantinopoli del 10° sec.: importantissimo perché, mentre nelle precedenti opere A. usa sempre procedimenti dimostrativi rigorosi (in genere dimostrazioni per assurdo), che non svelano i «mezzi di scoperta» (metodi euristici) da lui adoperati in realtà nella ricerca, il Metodo rivela che A. usava nelle sue ricerche un vero e proprio procedimento di «integrazione», cioè di suddivisione, per es., di un’area, in infiniti segmenti o di un volume in infinite superfici piane sovrapposte, in tutto simile al metodo degl’indivisibili di Bonaventura Cavalieri. In A. il metodo aveva aspetto meccanico, in quanto le figure (per es., piane) venivano immaginate pesanti, decomposte in striscette pesanti concentrabili nel proprio baricentro. Come metodo dimostrativo A. usava quello di esaustione, ideato da Eudosso. Partendo da premesse certe, con procedimento deduttivo alla maniera di Euclide, A. pose, in forma del tutto autonoma, chiara e rigorosa, i fondamenti della statica e dell’idrostatica (principio della leva, a proposito del quale si suole attribuire ad A. la frase «datemi un punto d’appoggio e solleverò il mondo»).

Vedi anche
metodo di esaustione Schema di ragionamento matematico (per assurdo), che permette di evitare l’uso dell’infinito, o comunque di procedimenti infinitesimali, nelle questioni relative alle aree e ai volumi.  ● Fu introdotto, o per lo meno valorizzato, da Eudosso di Cnido (4° sec. a.C.). Metodo perfettamente rigoroso, giacché ... Johan Ludvig Heiberg Storico danese della scienza (Aalborg 1854 - Copenaghen 1928), prof. di filologia classica all'univ. di Copenaghen. Dal 1922 socio straniero dei Lincei. Oltre a numerose edizioni critiche dei principali matematici greci, si deve a lui la scoperta (1907) dell'opera di Archimede Sul metodo, ritenuta perduta. ... geometria In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali. 1. Cenni storici 1.1 L’antichità. - L’origine della geometria è legata a concreti problemi di misurazione del terreno (nacque a scopi agrimensori nella zona del delta del Nilo); si trattava quindi essenzialmente ... circonferenza In geometria, curva piana, luogo dei punti equidistanti da un punto fisso O, detto centro della circonferenza; la superficie piana da essa racchiusa è il cerchio. La distanza costante dal centro a un punto qualsiasi della circonferenza si chiama raggio; il doppio di essa, diametro. Molte nozioni e proprietà ...
Tag
  • CALCOLO INFINITESIMALE
  • BONAVENTURA CAVALIERI
  • COSTANTINOPOLI
  • CIRCONFERENZA
  • RINASCIMENTO
Altri risultati per Archimede
  • Archimede
    Enciclopedia della Matematica (2013)
    Archimede (Siracusa 287 a.C.? - 212 a.C.) matematico e fisico greco. È uno dei più grandi scienziati del mondo antico: le sue ricerche rappresentano il punto di arrivo della scienza greca antica e quello di partenza per lo sviluppo della scienza moderna. I suoi metodi di indagine possono essere letti ...
  • Archimède
    Enciclopedia on line
    Matematico e fisico siracusano (Siracusa 287 - ivi 212 a. C.). È stato uno dei più grandi matematici dell'antichità. Probabilmente allievo di Euclide, compì forse un viaggio in Egitto, studiando ad Alessandria; tornò poi a Siracusa, dove scrisse la maggior parte delle sue opere. Ivi morì, ucciso, si ...
  • Archimede
    Enciclopedia dei ragazzi (2005)
    Pier Daniele Napolitani Un genio distratto Archimede, vissuto nel 3° secolo a.C., fu uno dei più grandi matematici e scienziati del mondo antico e divenne famoso per come difese dai Romani la sua patria, Siracusa, durante la Seconda guerra punica. Intorno alla sua figura si formò assai presto un alone ...
  • Archimède
    Dizionario delle Scienze Fisiche (1996)
    Archimède [STF] (Siracusa 287 a.C ivi 212 a.C.) Matematico e fisico, il maggiore dell'antichità. ◆ [MCF] Bilancia di A.: lo stesso che bilancia (←) idrostatica. ◆ [MCF] Numero di A.: relativ. a un solido di massa volumica ρ₀ immerso in fluido di massa volumica ρt e coefficiente di viscosità dinamica ...
  • ARCHIMEDE
    Enciclopedia Italiana (1929)
    Nacque in Siracusa, probabilmente intorno al 287 a. C. Era, come dice egli stesso, figlio di un astronomo, Fidia. Polibio e Plutarco riferiscono che egli era parente di Gerone, re di Siracusa. Un suo scritto, l'Arenario, è dedicato a Gelone, figlio di Gerone. Diodoro Siculo (V, 37) dice che A. viaggiò ...
Mostra altri risultati
Vocabolario
salinòn
salinon salinòn s. m. [etimo incerto]. – Particolare figura geometrica piana limitata da semicirconferenze, studiata probabilmente già da Archimede.
archimedèo
archimedeo archimedèo agg. – Di Archimede, matematico e fisico siracusano (287-212 a. C.): spinta a., la spinta idrostatica; corpo a., corpo numerico ordinato nel quale, dati due qualunque elementi positivi, esiste sempre un conveniente...
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali